These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 24643256)
1. Active Learning Strategies for Phenotypic Profiling of High-Content Screens. Smith K; Horvath P J Biomol Screen; 2014 Jun; 19(5):685-95. PubMed ID: 24643256 [TBL] [Abstract][Full Text] [Related]
2. Machine learning improves the precision and robustness of high-content screens: using nonlinear multiparametric methods to analyze screening results. Horvath P; Wild T; Kutay U; Csucs G J Biomol Screen; 2011 Oct; 16(9):1059-67. PubMed ID: 21807964 [TBL] [Abstract][Full Text] [Related]
3. Combining Supervised and Unsupervised Machine Learning Methods for Phenotypic Functional Genomics Screening. Omta WA; van Heesbeen RG; Shen I; de Nobel J; Robers D; van der Velden LM; Medema RH; Siebes APJM; Feelders AJ; Brinkkemper S; Klumperman JS; Spruit MR; Brinkhuis MJS; Egan DA SLAS Discov; 2020 Jul; 25(6):655-664. PubMed ID: 32400262 [TBL] [Abstract][Full Text] [Related]
4. Large-scale tracking and classification for automatic analysis of cell migration and proliferation, and experimental optimization of high-throughput screens of neuroblastoma cells. Harder N; Batra R; Diessl N; Gogolin S; Eils R; Westermann F; König R; Rohr K Cytometry A; 2015 Jun; 87(6):524-40. PubMed ID: 25630981 [TBL] [Abstract][Full Text] [Related]
5. Digging deep into Golgi phenotypic diversity with unsupervised machine learning. Hussain S; Le Guezennec X; Yi W; Dong H; Chia J; Yiping K; Khoon LK; Bard F Mol Biol Cell; 2017 Dec; 28(25):3686-3698. PubMed ID: 29021342 [TBL] [Abstract][Full Text] [Related]
6. Using information from historical high-throughput screens to predict active compounds. Riniker S; Wang Y; Jenkins JL; Landrum GA J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016 [TBL] [Abstract][Full Text] [Related]
7. SemiBoost: boosting for semi-supervised learning. Mallapragada PK; Jin R; Jain AK; Liu Y IEEE Trans Pattern Anal Mach Intell; 2009 Nov; 31(11):2000-14. PubMed ID: 19762927 [TBL] [Abstract][Full Text] [Related]
8. Advanced Cell Classifier: User-Friendly Machine-Learning-Based Software for Discovering Phenotypes in High-Content Imaging Data. Piccinini F; Balassa T; Szkalisity A; Molnar C; Paavolainen L; Kujala K; Buzas K; Sarazova M; Pietiainen V; Kutay U; Smith K; Horvath P Cell Syst; 2017 Jun; 4(6):651-655.e5. PubMed ID: 28647475 [TBL] [Abstract][Full Text] [Related]
9. Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-throughput RNAi screens. Yin Z; Zhou X; Bakal C; Li F; Sun Y; Perrimon N; Wong ST BMC Bioinformatics; 2008 Jun; 9():264. PubMed ID: 18534020 [TBL] [Abstract][Full Text] [Related]
13. Control-Plate Regression (CPR) Normalization for High-Throughput Screens with Many Active Features. Murie C; Barette C; Lafanechère L; Nadon R J Biomol Screen; 2014 Jun; 19(5):661-71. PubMed ID: 24352083 [TBL] [Abstract][Full Text] [Related]
14. Unsupervised active learning based on hierarchical graph-theoretic clustering. Hu W; Hu W; Xie N; Maybank S IEEE Trans Syst Man Cybern B Cybern; 2009 Oct; 39(5):1147-61. PubMed ID: 19336318 [TBL] [Abstract][Full Text] [Related]
15. Large-scale image-based screening and profiling of cellular phenotypes. Bougen-Zhukov N; Loh SY; Lee HK; Loo LH Cytometry A; 2017 Feb; 91(2):115-125. PubMed ID: 27434125 [TBL] [Abstract][Full Text] [Related]
16. Recent advances in quantitative high throughput and high content data analysis. Moutsatsos IK; Parker CN Expert Opin Drug Discov; 2016; 11(4):415-23. PubMed ID: 26924521 [TBL] [Abstract][Full Text] [Related]