These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24643463)

  • 1. Gold nanorod length controls dispersion, local ordering, and optical absorption in polymer nanocomposite films.
    Wang D; Hore MJ; Ye X; Zheng C; Murray CB; Composto RJ
    Soft Matter; 2014 May; 10(19):3404-13. PubMed ID: 24643463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanorod Assemblies in Polymer Films and Their Dispersion-Dependent Optical Properties.
    Hore MJA; Frischknecht AL; Composto RJ
    ACS Macro Lett; 2012 Jan; 1(1):115-121. PubMed ID: 35578465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanorods dispersed in homopolymer films: optical properties controlled by self-assembly and percolation of nanorods.
    Jiang G; Hore MJ; Gam S; Composto RJ
    ACS Nano; 2012 Feb; 6(2):1578-88. PubMed ID: 22283716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanorod self-assembly for tuning optical absorption.
    Hore MJ; Composto RJ
    ACS Nano; 2010 Nov; 4(11):6941-9. PubMed ID: 21047069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling Resonances of Surface Plasmon in Gold Nanorod/Copper Chalcogenide Core-Shell Nanostructures and Their Enhanced Photothermal Effect.
    Li Y; Pan G; Liu Q; Ma L; Xie Y; Zhou L; Hao Z; Wang Q
    Chemphyschem; 2018 Jun; ():. PubMed ID: 29863808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiphoton photoelectron emission microscopy of single Au nanorods: combined experimental and theoretical study of rod morphology and dielectric environment on localized surface plasmon resonances.
    Grubisic A; Schweikhard V; Baker TA; Nesbitt DJ
    Phys Chem Chem Phys; 2013 Jul; 15(26):10616-27. PubMed ID: 23417070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of label-free H2O2 based on sensitive Au nanorods as sensor.
    Shan G; Zheng S; Chen S; Chen Y; Liu Y
    Colloids Surf B Biointerfaces; 2013 Feb; 102():327-30. PubMed ID: 23006572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods.
    Ni W; Kou X; Yang Z; Wang J
    ACS Nano; 2008 Apr; 2(4):677-86. PubMed ID: 19206598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gold nanorod-based localized surface plasmon resonance platform for the detection of environmentally toxic metal ions.
    Jayabal S; Pandikumar A; Lim HN; Ramaraj R; Sun T; Huang NM
    Analyst; 2015 Apr; 140(8):2540-55. PubMed ID: 25738185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-field optical imaging of plasmon modes in gold nanorods.
    Imura K; Nagahara T; Okamoto H
    J Chem Phys; 2005 Apr; 122(15):154701. PubMed ID: 15945650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled plasmon resonance properties of hollow gold nanosphere aggregates.
    Chandra M; Dowgiallo AM; Knappenberger KL
    J Am Chem Soc; 2010 Nov; 132(44):15782-9. PubMed ID: 20961113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable optical activity of gold nanorod and chiral quantum dot assemblies.
    Zhu Z; Guo J; Liu W; Li Z; Han B; Zhang W; Tang Z
    Angew Chem Int Ed Engl; 2013 Dec; 52(51):13571-5. PubMed ID: 24346941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced optical responses of Au@Pd core/shell nanobars.
    Zhang K; Xiang Y; Wu X; Feng L; He W; Liu J; Zhou W; Xie S
    Langmuir; 2009 Jan; 25(2):1162-8. PubMed ID: 19090666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold nanorod linking to control plasmonic properties in solution and polymer nanocomposites.
    Ferrier RC; Lee HS; Hore MJ; Caporizzo M; Eckmann DM; Composto RJ
    Langmuir; 2014 Feb; 30(7):1906-14. PubMed ID: 24483622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced infrared LSPR sensitivity of cap-shaped gold nanoparticles coupled to a metallic film.
    Takei H; Bessho N; Ishii A; Okamoto T; Beyer A; Vieker H; Gölzhäuser A
    Langmuir; 2014 Mar; 30(8):2297-305. PubMed ID: 24512356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold Ultrathin Nanorods with Controlled Aspect Ratios and Surface Modifications: Formation Mechanism and Localized Surface Plasmon Resonance.
    Takahata R; Yamazoe S; Koyasu K; Imura K; Tsukuda T
    J Am Chem Soc; 2018 May; 140(21):6640-6647. PubMed ID: 29694041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers.
    Kumar J; Wei X; Barrow S; Funston AM; Thomas KG; Mulvaney P
    Phys Chem Chem Phys; 2013 Mar; 15(12):4258-64. PubMed ID: 23439989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays.
    Hobbs RG; Yang Y; Fallahi A; Keathley PD; De Leo E; Kärtner FX; Graves WS; Berggren KK
    ACS Nano; 2014 Nov; 8(11):11474-82. PubMed ID: 25380557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Room temperature synthesis and optical studies on Ag and Au mixed nanocomposite polyvinylpyrrolidone polymer films.
    Udayabhaskar R; Mangalaraja RV; Manikandan D; Arjunan V; Karthikeyan B
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 99():69-73. PubMed ID: 23041924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.