BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24643562)

  • 21. Proteome-wide reactivity profiling identifies diverse carbamate chemotypes tuned for serine hydrolase inhibition.
    Chang JW; Cognetta AB; Niphakis MJ; Cravatt BF
    ACS Chem Biol; 2013 Jul; 8(7):1590-9. PubMed ID: 23701408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard.
    Alban A; David SO; Bjorkesten L; Andersson C; Sloge E; Lewis S; Currie I
    Proteomics; 2003 Jan; 3(1):36-44. PubMed ID: 12548632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of a phenol extraction-based protein preparation method amenable to downstream 2DE and MALDI-MS based analysis of bacterial proteomes.
    Alam M; Ghosh W
    Proteomics; 2014 Feb; 14(2-3):216-21. PubMed ID: 24339214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of three-dimensional gel electrophoresis to improve quantitative profiling of complex proteomes.
    Colignon B; Raes M; Dieu M; Delaive E; Mauro S
    Proteomics; 2013 Jul; 13(14):2077-82. PubMed ID: 23592440
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tandem orthogonal proteolysis-activity-based protein profiling (TOP-ABPP)--a general method for mapping sites of probe modification in proteomes.
    Weerapana E; Speers AE; Cravatt BF
    Nat Protoc; 2007; 2(6):1414-25. PubMed ID: 17545978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Increasing Impact of Activity-Based Protein Profiling in Plant Science.
    Morimoto K; van der Hoorn RA
    Plant Cell Physiol; 2016 Mar; 57(3):446-61. PubMed ID: 26872839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Advances in applications of activity-based chemical probes in the characterization of amino acid reactivities].
    Li J; Wang G; Ye M; Qin H
    Se Pu; 2023 Jan; 41(1):14-23. PubMed ID: 36633073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein from the fraction remaining after RNA extraction is useful for proteomics but care must be exercised in its application.
    Yamaguchi H; Hasegawa K; Esumi M
    Exp Mol Pathol; 2013 Aug; 95(1):46-50. PubMed ID: 23707946
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of 2D-DIGE in cancer proteomics toward personalized medicine.
    Kondo T; Hirohashi S
    Methods Mol Biol; 2009; 577():135-54. PubMed ID: 19718514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of Apoplastic Protease Inhibitors Using Convolution Activity-Based Protein Profiling.
    Passarge A; Doehlemann G; Misas Villamil JC
    Methods Mol Biol; 2022; 2447():95-104. PubMed ID: 35583775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Competitive profiling for enzyme inhibitors using chemical probes.
    Prothiwa M; Böttcher T
    Methods Enzymol; 2020; 633():49-69. PubMed ID: 32046853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ABPP methodology: introduction and overview.
    Nodwell MB; Sieber SA
    Top Curr Chem; 2012; 324():1-41. PubMed ID: 22160389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mining the active proteome in plant science and biotechnology.
    Kołodziejek I; van der Hoorn RA
    Curr Opin Biotechnol; 2010 Apr; 21(2):225-33. PubMed ID: 20197235
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sulfonyl fluoride analogues as activity-based probes for serine proteases.
    Shannon DA; Gu C; McLaughlin CJ; Kaiser M; van der Hoorn RA; Weerapana E
    Chembiochem; 2012 Nov; 13(16):2327-30. PubMed ID: 23008217
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Capabilities using 2-D DIGE in proteomics research : the new gold standard for 2-D gel electrophoresis.
    Rozanas CR; Loyland SM
    Methods Mol Biol; 2008; 441():1-18. PubMed ID: 18370308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 2D-DIGE: comparative proteomics of cellular signalling pathways.
    Larbi NB; Jefferies C
    Methods Mol Biol; 2009; 517():105-32. PubMed ID: 19378013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Difference gel electrophoresis.
    Timms JF; Cramer R
    Proteomics; 2008 Dec; 8(23-24):4886-97. PubMed ID: 19003860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A protease activity-depleted environment for heterologous proteins migrating towards the leaf cell apoplast.
    Goulet C; Khalf M; Sainsbury F; D'Aoust MA; Michaud D
    Plant Biotechnol J; 2012 Jan; 10(1):83-94. PubMed ID: 21895943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Establishment of two-dimensional differential gel electrophoresis using cerebrospinal fluid from neurocysticercosis patients].
    Li JY; Tian XJ; Huang Y; Yang YJ; Ma QR; Xue YP
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2008 Jun; 26(3):174-8. PubMed ID: 19160961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Size-matched alkyne-conjugated cyanine fluorophores to identify differences in protein glycosylation.
    Burnham-Marusich AR; Plechaty AM; Berninsone PM
    Electrophoresis; 2014 Sep; 35(18):2621-5. PubMed ID: 24931120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.