These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24643633)

  • 1. The effect of drop volume and micropillar shape on the apparent contact angle of ordered microstructured surfaces.
    Afferrante L; Carbone G
    Soft Matter; 2014 Jun; 10(22):3906-14. PubMed ID: 24643633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructured superhydrorepellent surfaces: effect of drop pressure on fakir-state stability and apparent contact angles.
    Afferrante L; Carbone G
    J Phys Condens Matter; 2010 Aug; 22(32):325107. PubMed ID: 21386489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical theory of wetting of liquid drops on superhydrophobic randomly rough surfaces.
    Afferrante L; Carbone G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042407. PubMed ID: 26565257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of drop volume and surface statistics on the superhydrophobicity of randomly rough substrates.
    Afferrante L; Carbone G
    J Phys Condens Matter; 2018 Jan; 30(4):045001. PubMed ID: 29231182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet detachment by air flow for microstructured superhydrophobic surfaces.
    Hao P; Lv C; Yao Z
    Langmuir; 2013 Apr; 29(17):5160-6. PubMed ID: 23557076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retention Forces for Drops on Microstructured Superhydrophobic Surfaces.
    Humayun S; Maynes RD; Crockett J; Iverson BD
    Langmuir; 2022 Dec; 38(51):15960-15972. PubMed ID: 36516440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limiting conditions for applying the spherical section assumption in contact angle estimation.
    Chatterjee J
    J Colloid Interface Sci; 2003 Mar; 259(1):139-47. PubMed ID: 12651142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness".
    Zhao H; Park KC; Law KY
    Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mean-field theory of liquid droplets on roughened solid surfaces: application to superhydrophobicity.
    Porcheron F; Monson PA
    Langmuir; 2006 Feb; 22(4):1595-601. PubMed ID: 16460079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces.
    Bottiglione F; Carbone G
    J Phys Condens Matter; 2015 Jan; 27(1):015009. PubMed ID: 25469488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite size effects on textured surfaces: recovering contact angles from vagarious drop edges.
    Gauthier A; Rivetti M; Teisseire J; Barthel E
    Langmuir; 2014 Feb; 30(6):1544-9. PubMed ID: 24460529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anisotropy in the wetting of rough surfaces.
    Chen Y; He B; Lee J; Patankar NA
    J Colloid Interface Sci; 2005 Jan; 281(2):458-64. PubMed ID: 15571703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wetting on the microscale: shape of a liquid drop on a microstructured surface at different length scales.
    Papadopoulos P; Deng X; Mammen L; Drotlef DM; Battagliarin G; Li C; Müllen K; Landfester K; del Campo A; Butt HJ; Vollmer D
    Langmuir; 2012 Jun; 28(22):8392-8. PubMed ID: 22578130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting behavior of a drop atop holes.
    Chou TH; Hong SJ; Sheng YJ; Tsao HK
    J Phys Chem B; 2010 Jun; 114(22):7509-15. PubMed ID: 20476745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations.
    Ravipati S; Aymard B; Kalliadasis S; Galindo A
    J Chem Phys; 2018 Apr; 148(16):164704. PubMed ID: 29716213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-precision drop shape analysis on inclining flat surfaces: introduction and comparison of this special method with commercial contact angle analysis.
    Schmitt M; Heib F
    J Chem Phys; 2013 Oct; 139(13):134201. PubMed ID: 24116561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super liquid-repellent layers: The smaller the better.
    Butt HJ; Vollmer D; Papadopoulos P
    Adv Colloid Interface Sci; 2015 Aug; 222():104-9. PubMed ID: 24996450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between Air Bubbles and Superhydrophobic Surfaces in Aqueous Solutions.
    Shi C; Cui X; Zhang X; Tchoukov P; Liu Q; Encinas N; Paven M; Geyer F; Vollmer D; Xu Z; Butt HJ; Zeng H
    Langmuir; 2015 Jul; 31(26):7317-27. PubMed ID: 26065326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.