BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 2464368)

  • 1. Conformational properties of branched RNA fragments in aqueous solution.
    Damha MJ; Ogilvie KK
    Biochemistry; 1988 Aug; 27(17):6403-16. PubMed ID: 2464368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational properties of dinucleoside monophosphates in solution: dipurines and dipyrimidines.
    Lee CH; Ezra FS; Kondo NS; Sarma RH; Danyluk SS
    Biochemistry; 1976 Aug; 15(16):3627-39. PubMed ID: 952881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational properties of adenylyl-3' leads to 5'-adenosine in aqueous solution.
    Kondo NS; Danyluk SS
    Biochemistry; 1976 Feb; 15(4):756-68. PubMed ID: 1247532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of (2'-5') and (3'-5') phosphodiester linkages on conformational and stacking properties of cytidylyl-cytidine in aqueous solution.
    Ezra FS; Kondo NS; Ainsworth CF; Danyluk SS
    Nucleic Acids Res; 1976 Oct; 3(10):2549-62. PubMed ID: 995643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical calculations of conformational preferences in dinucleoside monophosphates Up-U and Ap-A. Significance of intramolecular base-backbone interaction.
    Tewari R
    Biochim Biophys Acta; 1980 Jul; 608(2):446-58. PubMed ID: 7397196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational studies of nucleic acids: IV. The conformational energetics of oligonucleotides: d(ApApApA) and ApApApA.
    Pearlman DA; Kim SH
    J Biomol Struct Dyn; 1986 Aug; 4(1):69-98. PubMed ID: 2482750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational properties of purine-pyrimidine and pyrimidine-purine dinucleoside monophosphates.
    Ezra FS; Lee CH; Kondo NS; Danyluk SS; Sarma RH
    Biochemistry; 1977 May; 16(9):1977-87. PubMed ID: 870035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational studies of dithymidine boranomonophosphate diastereoisomers.
    Li H; Huang F; Shaw BR
    Bioorg Med Chem; 1997 May; 5(5):787-95. PubMed ID: 9208090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced nuclear magnetic resonance lanthanide probe analyses of short-range conformational interrelations controlling ribonucleic acid structures.
    Yokoyama S; Inagaki F; Miyazawa T
    Biochemistry; 1981 May; 20(10):2981-8. PubMed ID: 6166319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The occurence of the syn-C3' endo conformation and the distorted backbone conformations for C4'-C5' and P-O5' in oligo and polynucleotides.
    Vasudevan SS; Sundaralingam M
    J Biomol Struct Dyn; 2001 Jun; 18(6):824-31. PubMed ID: 11444371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational studies of 13 trinucleoside bisphosphates by 360-MHz 1H-NMR spectroscopy. 1. Ribose protons.
    Lee CH
    Eur J Biochem; 1983 Dec; 137(1-2):347-56. PubMed ID: 6317391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational studies of trinucleoside bisphosphates. 2. Potential energy calculations.
    Lee CH
    Eur J Biochem; 1983 Dec; 137(1-2):357-63. PubMed ID: 6549611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-nucleotide interactions: crystal structures of alkali (Li+, Na+, K+) and alkaline earth (Ca2+, Mg2+) metal complexes of adenosine 2'-monophosphate.
    Padiyar GS; Seshadri TP
    J Biomol Struct Dyn; 1998 Feb; 15(4):803-21. PubMed ID: 9514255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational flexibility of the 3' acceptor end of transfer ribonucleic acid.
    Cheng DM; Danyluk SS; Dhingra MM; Ezra FS; MacCoss M; Mitra CK; Sarma RH
    Biochemistry; 1980 May; 19(11):2491-7. PubMed ID: 7387986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR docking of the competitive inhibitor thymidine 3',5'-diphosphate into the X-ray structure of staphylococcal nuclease.
    Weber DJ; Serpersu EH; Gittis AG; Lattman EE; Mildvan AS
    Proteins; 1993 Sep; 17(1):20-35. PubMed ID: 8234242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear magnetic resonance studies of 2'- and 3'-ribonucleotide structures in solution.
    Davies DB; Danyluk SS
    Biochemistry; 1975 Feb; 14(3):543-54. PubMed ID: 1111570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoexcitation of adenine cation radical [A*+] in the near UV-vis region produces sugar radicals in adenosine and in its nucleotides.
    Adhikary A; Khanduri D; Kumar A; Sevilla MD
    J Phys Chem B; 2008 Dec; 112(49):15844-55. PubMed ID: 19367991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA bending and sequence-dependent backbone conformation NMR and computer experiments.
    Ojha RP; Dhingra MM; Sarma MH; Shibata M; Farrar M; Turner CJ; Sarma RH
    Eur J Biochem; 1999 Oct; 265(1):35-53. PubMed ID: 10491156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative conformational study of thymidylyl(3'----5')-thymidine, thymidylyl(3'----5')-5'-thio-5'- deoxythymidine and thymidinylacetamido-[3'(O)----5'(C)]-5'-deoxythymidine.
    Glemarec C; Nyilas A; Sund C; Chattopadhyaya J
    J Biochem Biophys Methods; 1990; 21(4):311-32. PubMed ID: 1965195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1H NMR assignments and conformational analysis of the oligoribonucleotides CA, CAU, CAUG, ACAUG, and UCAUG: observation of pyrimidine H5-H1' long-range scalar couplings.
    Orban J; Bell RA
    J Biomol Struct Dyn; 1990 Feb; 7(4):837-48. PubMed ID: 2310518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.