BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 2464373)

  • 41. [Effect of bilayer lipid membrane thickness, composition, and tension on gramicidin channel parameters].
    Rudnev VS; Ermishkin LN; Rovin IuG
    Biofizika; 1980; 25(5):857-8. PubMed ID: 6158349
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The permeation properties of small organic cations in gramicidin A channels.
    Seoh SA; Busath D
    Biophys J; 1993 Apr; 64(4):1017-28. PubMed ID: 7684267
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The antimicrobial peptide gramicidin S permeabilizes phospholipid bilayer membranes without forming discrete ion channels.
    Ashrafuzzaman M; Andersen OS; McElhaney RN
    Biochim Biophys Acta; 2008 Dec; 1778(12):2814-22. PubMed ID: 18809374
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Binding constants of Li+, K+, and Tl+ in the gramicidin channel determined from water permeability measurements.
    Dani JA; Levitt DG
    Biophys J; 1981 Aug; 35(2):485-99. PubMed ID: 6168310
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of calcium on the gramicidin A single channel in phosphatidylserine membranes. Screening and blocking.
    Gambale F; Menini A; Rauch G
    Eur Biophys J; 1987; 14(6):369-74. PubMed ID: 2439324
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Free-standing lipid bilayers in silicon chips-membrane stabilization based on microfabricated apertures with a nanometer-scale smoothness.
    Hirano-Iwata A; Aoto K; Oshima A; Taira T; Yamaguchi RT; Kimura Y; Niwano M
    Langmuir; 2010 Feb; 26(3):1949-52. PubMed ID: 19799400
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The interaction of phthalocyanine with planar lipid bilayers. Photodynamic inactivation of gramicidin channels.
    Rokitskaya TI; Antonenko YN; Kotova EA
    FEBS Lett; 1993 Aug; 329(3):332-5. PubMed ID: 7689977
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Relationship between gramicidin conformation dependent induction of phospholipid transbilayer movement and hexagonal HII phase formation in erythrocyte membranes.
    Tournois H; Henseleit U; De Gier J; De Kruijff B; Haest CW
    Biochim Biophys Acta; 1988 Dec; 946(1):173-7. PubMed ID: 2462912
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chemical and photochemical modification of colicin E1 and gramicidin A in bilayer lipid membranes.
    Sobko AA; Vigasina MA; Rokitskaya TI; Kotova EA; Zakharov SD; Cramer WA; Antonenko YN
    J Membr Biol; 2004 May; 199(1):51-62. PubMed ID: 15366423
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Relaxation spectra of gramicidin dimerization in a lipid bilayer membrane.
    Hickok NJ; Kustin K; Veatch W
    Biochim Biophys Acta; 1986 Jun; 858(1):99-106. PubMed ID: 2423131
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of halothane on channel activity of N-acetyl gramicidin.
    Bradley RJ; Urry DW; Parenti-Castelli G; Lenaz G
    Biochem Biophys Res Commun; 1981 Aug; 101(3):963-9. PubMed ID: 6171278
    [No Abstract]   [Full Text] [Related]  

  • 52. Ion permeability induced in artificial membranes by the ATP/ADP antiporter.
    Tikhonova IM; Andreyev AYu ; Antonenko YuN ; Kaulen AD; Komrakov AYu ; Skulachev VP
    FEBS Lett; 1994 Jan; 337(3):231-4. PubMed ID: 7507443
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Solvent drag across gramicidin channels demonstrated by microelectrodes.
    Pohl P; Saparov SM
    Biophys J; 2000 May; 78(5):2426-34. PubMed ID: 10777738
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cooperative binding of primycin and gramicidin on erythrocyte membranes. A cation transport study.
    Suga'r IP; Blaskó K; Györgyi S; Shcagina LV; Malev VV; Lev AA
    Membr Biochem; 1989; 8(1):1-10. PubMed ID: 2478862
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Mechanosensitivity of gramicidin A channels in semispherical bilayer membranes at constant tension].
    Markin VS; Shlenskiĭ VG; Saimon SA; Benos DD; Ismailov II
    Biofizika; 2006; 51(6):1014-8. PubMed ID: 17175912
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ion channels as tools to monitor lipid bilayer-membrane protein interactions: gramicidin channels as molecular force transducers.
    Andersen OS; Nielsen C; Maer AM; Lundbaek JA; Goulian M; Koeppe RE
    Methods Enzymol; 1999; 294():208-24. PubMed ID: 9916229
    [No Abstract]   [Full Text] [Related]  

  • 57. The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature.
    Antonov VF; Petrov VV; Molnar AA; Predvoditelev DA; Ivanov AS
    Nature; 1980 Feb; 283(5747):585-6. PubMed ID: 6153458
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interaction of cation fluxes in gramicidin A channels in lipid bilayer membranes.
    Schagina LV; Grinfeldt AE; Lev AA
    Nature; 1978 May; 273(5659):243-5. PubMed ID: 76992
    [No Abstract]   [Full Text] [Related]  

  • 59. Ion movement through gramicidin A channels. Interfacial polarization effects on single-channel current measurements.
    Andersen OS
    Biophys J; 1983 Feb; 41(2):135-46. PubMed ID: 6188501
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effects of calcium and other polyvalent cations on channel formation by Escherichia coli alpha-hemolysin in red blood cells and lipid bilayer membranes.
    Döbereiner A; Schmid A; Ludwig A; Goebel W; Benz R
    Eur J Biochem; 1996 Sep; 240(2):454-60. PubMed ID: 8841412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.