These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24644004)

  • 21. Multiplasmon modes for enhancing the photocatalytic activity of Au/Ag/Cu
    Hu Z; Mi Y; Ji Y; Wang R; Zhou W; Qiu X; Liu X; Fang Z; Wu X
    Nanoscale; 2019 Sep; 11(35):16445-16454. PubMed ID: 31441922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From UV to Near-Infrared Light-Responsive Metal-Organic Framework Composites: Plasmon and Upconversion Enhanced Photocatalysis.
    Li D; Yu SH; Jiang HL
    Adv Mater; 2018 Jul; 30(27):e1707377. PubMed ID: 29766571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Constructing functionalized plasmonic gold/titanium dioxide nanosheets with small gold nanoparticles for efficient photocatalytic hydrogen evolution.
    Cheng L; Zhang D; Liao Y; Li F; Zhang H; Xiang Q
    J Colloid Interface Sci; 2019 Nov; 555():94-103. PubMed ID: 31377648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Preparation of Au@TiO
    Wan G; Peng X; Zeng M; Yu L; Wang K; Li X; Wang G
    Nanoscale Res Lett; 2017 Sep; 12(1):535. PubMed ID: 28924717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast and Efficient Sun Light Photocatalytic Activity of Au_ZnO Core-Shell Nanoparticles Prepared by a One-Pot Synthesis.
    Spitaleri L; Nicotra G; Zimbone M; Contino A; Maccarrone G; Alberti A; Gulino A
    ACS Omega; 2019 Sep; 4(12):15061-15066. PubMed ID: 31552348
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO
    He W; Cai J; Jiang X; Yin JJ; Meng Q
    Phys Chem Chem Phys; 2018 Jun; 20(23):16117-16125. PubMed ID: 29855003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Upconversion emission enhancement of Gd3+ ions induced by surface plasmon field in Au@NaYF4 nanostructures codoped with Gd(3+)-Yb(3+)-Tm(3+) ions.
    Jiang T; Liu Y; Liu S; Liu N; Qin W
    J Colloid Interface Sci; 2012 Jul; 377(1):81-7. PubMed ID: 22515994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting.
    Singh GP; Shrestha KM; Nepal A; Klabunde KJ; Sorensen CM
    Nanotechnology; 2014 Jul; 25(26):265701. PubMed ID: 24916183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Au/PtO nanoparticle-modified g-C3N4 for plasmon-enhanced photocatalytic hydrogen evolution under visible light.
    Jiang J; Yu J; Cao S
    J Colloid Interface Sci; 2016 Jan; 461():56-63. PubMed ID: 26397910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance.
    Rajender G; Choudhury B; Giri PK
    Nanotechnology; 2017 Sep; 28(39):395703. PubMed ID: 28726671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In situ synthesis of TiO2/SnO(x)-Au ternary heterostructures effectively promoting visible-light photocatalysis.
    Dong Z; Wu M; Wu J; Ma Y; Ma Z
    Dalton Trans; 2015 Jul; 44(26):11901-10. PubMed ID: 26061220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An unconventional outer-to-inner synthesis strategy for core (Au)-shell nanostructures with photo-electrochemical enhancement.
    Zhang Z; Baek M; Song H; Yong K
    Nanoscale; 2017 Apr; 9(16):5342-5351. PubMed ID: 28401236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimised photocatalytic hydrogen production using core-shell AuPd promoters with controlled shell thickness.
    Jones W; Su R; Wells PP; Shen Y; Dimitratos N; Bowker M; Morgan D; Iversen BB; Chutia A; Besenbacher F; Hutchings G
    Phys Chem Chem Phys; 2014 Dec; 16(48):26638-44. PubMed ID: 25363813
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation.
    Fang J; Xu L; Zhang Z; Yuan Y; Cao S; Wang Z; Yin L; Liao Y; Xue C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8088-92. PubMed ID: 23865712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface plasmon resonance enhanced direct Z-scheme TiO
    Zhang W; Hu Y; Yan C; Hong D; Chen R; Xue X; Yang S; Tian Y; Tie Z; Jin Z
    Nanoscale; 2019 May; 11(18):9053-9060. PubMed ID: 31025687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic core-shell nanostructure as an optical photoactive nanolens for enhanced light harvesting and hydrogen production.
    Gesesse GD; Le Neel T; Cui Z; Bachelier G; Remita H; Colbeau-Justin C; Ghazzal MN
    Nanoscale; 2018 Nov; 10(43):20140-20146. PubMed ID: 30379178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Au@TiO
    Pougin A; Dodekatos G; Dilla M; Tüysüz H; Strunk J
    Chemistry; 2018 Aug; 24(47):12416-12425. PubMed ID: 29879291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel Au/La-SrTiO3 microspheres: superimposed effect of gold nanoparticles and lanthanum doping in photocatalysis.
    Wang G; Wang P; Luo HK; Hor TS
    Chem Asian J; 2014 Jul; 9(7):1854-9. PubMed ID: 24817580
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmon-enhanced broadband absorption of MoS
    Zhou K; Song J; Lu L; Luo Z; Cheng Q
    Opt Express; 2019 Feb; 27(3):2305-2316. PubMed ID: 30732269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.