These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24644093)

  • 1. Catalytic water splitting with an iridium carbene complex: a theoretical study.
    Venturini A; Barbieri A; Reek JN; Hetterscheid DG
    Chemistry; 2014 Apr; 20(18):5358-68. PubMed ID: 24644093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of the water oxidation mechanism with non-heme Fe(Pytacn) iron complexes. Evidence that the Fe(IV)(O)(Pytacn) species cannot react with the water molecule to form the O-O bond.
    Acuña-Parés F; Costas M; Luis JM; Lloret-Fillol J
    Inorg Chem; 2014 Jun; 53(11):5474-85. PubMed ID: 24816178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basic ancillary ligands promote O-O bond formation in iridium-catalyzed water oxidation: a DFT study.
    Vilella L; Vidossich P; Balcells D; Lledós A
    Dalton Trans; 2011 Nov; 40(42):11241-7. PubMed ID: 21918767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Half-sandwich iridium complexes for homogeneous water-oxidation catalysis.
    Blakemore JD; Schley ND; Balcells D; Hull JF; Olack GW; Incarvito CD; Eisenstein O; Brudvig GW; Crabtree RH
    J Am Chem Soc; 2010 Nov; 132(45):16017-29. PubMed ID: 20964386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iridium-catalyzed borylation of benzene with diboron. Theoretical elucidation of catalytic cycle including unusual iridium(v) intermediate.
    Tamura H; Yamazaki H; Sato H; Sakaki S
    J Am Chem Soc; 2003 Dec; 125(51):16114-26. PubMed ID: 14678004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6.
    Carrell TG; Bourles E; Lin M; Dismukes GC
    Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of oxidation of cyclohexane diol to adipic anhydride by [Ru(IV)(O)(tpa)(H2O)]2+ complex (tpa ═ tris(2-pyridylmethyl)amine).
    Shiota Y; Herrera JM; Juhász G; Abe T; Ohzu S; Ishizuka T; Kojima T; Yoshizawa K
    Inorg Chem; 2011 Jul; 50(13):6200-9. PubMed ID: 21634386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cis,cis-[(bpy)2RuVO]2O4+ catalyzes water oxidation formally via in situ generation of radicaloid RuIV-O*.
    Yang X; Baik MH
    J Am Chem Soc; 2006 Jun; 128(23):7476-85. PubMed ID: 16756301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of the oxidation of phenolates by the [Cu2O2(N,N'-di-tert-butylethylenediamine)2]2+ complex.
    Liu YF; Yu JG; Siegbahn PE; Blomberg MR
    Chemistry; 2013 Feb; 19(6):1942-54. PubMed ID: 23292840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of water oxidation to molecular oxygen with osmocene as photocatalyst: a theoretical study.
    Chen Y; Han J; Fang WH
    Inorg Chem; 2012 May; 51(9):4938-46. PubMed ID: 22486253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dioxygen and water activation processes on multi-Ru-substituted polyoxometalates: comparison with the "blue-dimer" water oxidation catalyst.
    Kuznetsov AE; Geletii YV; Hill CL; Morokuma K; Musaev DG
    J Am Chem Soc; 2009 May; 131(19):6844-54. PubMed ID: 19388697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic modification of the [Ru(II)(tpy)(bpy)(OH(2))](2+) scaffold: effects on catalytic water oxidation.
    Wasylenko DJ; Ganesamoorthy C; Henderson MA; Koivisto BD; Osthoff HD; Berlinguette CP
    J Am Chem Soc; 2010 Nov; 132(45):16094-106. PubMed ID: 20977265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly oxidizing and isolable oxoruthenium(V) complex [Ru(V)(N4O)(O)]2+: electronic structure, redox properties, and oxidation reactions investigated by DFT calculations.
    Guan X; Chan SL; Che CM
    Chem Asian J; 2013 Sep; 8(9):2046-56. PubMed ID: 23788366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radical formation in the [MeReO3]-catalyzed aqueous peroxidative oxidation of alkanes: a theoretical mechanistic study.
    Kuznetsov ML; Pombeiro AJ
    Inorg Chem; 2009 Jan; 48(1):307-18. PubMed ID: 19049432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of water oxidation catalysis promoted by [tpyRu(IV)=O]2L3+: a computational study.
    Yang X; Baik MH
    J Am Chem Soc; 2008 Dec; 130(48):16231-40. PubMed ID: 18998636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of O--O single bond formation in the oxidation of water by the ruthenium blue dimer.
    Bianco R; Hay PJ; Hynes JT
    J Phys Chem A; 2011 Jul; 115(27):8003-16. PubMed ID: 21615127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen-oxygen bond formation pathways promoted by ruthenium complexes.
    Romain S; Vigara L; Llobet A
    Acc Chem Res; 2009 Dec; 42(12):1944-53. PubMed ID: 19908829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.