These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
387 related articles for article (PubMed ID: 24644270)
1. Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. Cheng F; Zhao Z J Am Med Inform Assoc; 2014 Oct; 21(e2):e278-86. PubMed ID: 24644270 [TBL] [Abstract][Full Text] [Related]
2. Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs. Liu M; Wu Y; Chen Y; Sun J; Zhao Z; Chen XW; Matheny ME; Xu H J Am Med Inform Assoc; 2012 Jun; 19(e1):e28-35. PubMed ID: 22718037 [TBL] [Abstract][Full Text] [Related]
3. Positive-Unlabeled Learning for inferring drug interactions based on heterogeneous attributes. Hameed PN; Verspoor K; Kusljic S; Halgamuge S BMC Bioinformatics; 2017 Mar; 18(1):140. PubMed ID: 28249566 [TBL] [Abstract][Full Text] [Related]
4. Machine Learning-Based Prediction of Drug-Drug Interactions for Histamine Antagonist Using Hybrid Chemical Features. Dang LH; Dung NT; Quang LX; Hung LQ; Le NH; Le NTN; Diem NT; Nga NTT; Hung SH; Le NQK Cells; 2021 Nov; 10(11):. PubMed ID: 34831315 [TBL] [Abstract][Full Text] [Related]
5. Predicting potential drug-drug interactions on topological and semantic similarity features using statistical learning. Kastrin A; Ferk P; Leskošek B PLoS One; 2018; 13(5):e0196865. PubMed ID: 29738537 [TBL] [Abstract][Full Text] [Related]
6. DDI-PULearn: a positive-unlabeled learning method for large-scale prediction of drug-drug interactions. Zheng Y; Peng H; Zhang X; Zhao Z; Gao X; Li J BMC Bioinformatics; 2019 Dec; 20(Suppl 19):661. PubMed ID: 31870276 [TBL] [Abstract][Full Text] [Related]
7. Drug-drug interaction through molecular structure similarity analysis. Vilar S; Harpaz R; Uriarte E; Santana L; Rabadan R; Friedman C J Am Med Inform Assoc; 2012; 19(6):1066-74. PubMed ID: 22647690 [TBL] [Abstract][Full Text] [Related]
8. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies. Song D; Chen Y; Min Q; Sun Q; Ye K; Zhou C; Yuan S; Sun Z; Liao J J Clin Pharm Ther; 2019 Apr; 44(2):268-275. PubMed ID: 30565313 [TBL] [Abstract][Full Text] [Related]
9. Advancement in predicting interactions between drugs used to treat psoriasis and its comorbidities by integrating molecular and clinical resources. Patrick MT; Bardhi R; Raja K; He K; Tsoi LC J Am Med Inform Assoc; 2021 Jun; 28(6):1159-1167. PubMed ID: 33544847 [TBL] [Abstract][Full Text] [Related]
10. Predicting Drug-Drug Interactions Based on Integrated Similarity and Semi-Supervised Learning. Yan C; Duan G; Zhang Y; Wu FX; Pan Y; Wang J IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):168-179. PubMed ID: 32310779 [TBL] [Abstract][Full Text] [Related]
11. Computational prediction of drug-drug interactions based on drugs functional similarities. Ferdousi R; Safdari R; Omidi Y J Biomed Inform; 2017 Jun; 70():54-64. PubMed ID: 28465082 [TBL] [Abstract][Full Text] [Related]
12. Novel deep learning model for more accurate prediction of drug-drug interaction effects. Lee G; Park C; Ahn J BMC Bioinformatics; 2019 Aug; 20(1):415. PubMed ID: 31387547 [TBL] [Abstract][Full Text] [Related]
13. Systematic prediction of pharmacodynamic drug-drug interactions through protein-protein-interaction network. Huang J; Niu C; Green CD; Yang L; Mei H; Han JD PLoS Comput Biol; 2013; 9(3):e1002998. PubMed ID: 23555229 [TBL] [Abstract][Full Text] [Related]
14. Data-driven prediction of adverse drug reactions induced by drug-drug interactions. Liu R; AbdulHameed MDM; Kumar K; Yu X; Wallqvist A; Reifman J BMC Pharmacol Toxicol; 2017 Jun; 18(1):44. PubMed ID: 28595649 [TBL] [Abstract][Full Text] [Related]
15. Predicting drug-drug interactions by graph convolutional network with multi-kernel. Wang F; Lei X; Liao B; Wu FX Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864856 [TBL] [Abstract][Full Text] [Related]
16. Pharmacointeraction network models predict unknown drug-drug interactions. Cami A; Manzi S; Arnold A; Reis BY PLoS One; 2013; 8(4):e61468. PubMed ID: 23620757 [TBL] [Abstract][Full Text] [Related]
17. Comparison of Support Vector Machine, Naïve Bayes and Logistic Regression for Assessing the Necessity for Coronary Angiography. Golpour P; Ghayour-Mobarhan M; Saki A; Esmaily H; Taghipour A; Tajfard M; Ghazizadeh H; Moohebati M; Ferns GA Int J Environ Res Public Health; 2020 Sep; 17(18):. PubMed ID: 32899733 [TBL] [Abstract][Full Text] [Related]
18. A multimodal deep learning framework for predicting drug-drug interaction events. Deng Y; Xu X; Qiu Y; Xia J; Zhang W; Liu S Bioinformatics; 2020 Aug; 36(15):4316-4322. PubMed ID: 32407508 [TBL] [Abstract][Full Text] [Related]
19. Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. Zhang W; Chen Y; Liu F; Luo F; Tian G; Li X BMC Bioinformatics; 2017 Jan; 18(1):18. PubMed ID: 28056782 [TBL] [Abstract][Full Text] [Related]