These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 24644270)

  • 41. Determining molecular predictors of adverse drug reactions with causality analysis based on structure learning.
    Liu M; Cai R; Hu Y; Matheny ME; Sun J; Hu J; Xu H
    J Am Med Inform Assoc; 2014; 21(2):245-51. PubMed ID: 24334612
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Integrating multi-scale neighbouring topologies and cross-modal similarities for drug-protein interaction prediction.
    Xuan P; Zhang Y; Cui H; Zhang T; Guo M; Nakaguchi T
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33839743
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detection of drug-drug interactions by modeling interaction profile fingerprints.
    Vilar S; Uriarte E; Santana L; Tatonetti NP; Friedman C
    PLoS One; 2013; 8(3):e58321. PubMed ID: 23520498
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Advances in machine learning prediction of toxicological properties and adverse drug reactions of pharmaceutical agents.
    Ma XH; Wang R; Xue Y; Li ZR; Yang SY; Wei YQ; Chen YZ
    Curr Drug Saf; 2008 May; 3(2):100-14. PubMed ID: 18690988
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Label Propagation Prediction of Drug-Drug Interactions Based on Clinical Side Effects.
    Zhang P; Wang F; Hu J; Sorrentino R
    Sci Rep; 2015 Jul; 5():12339. PubMed ID: 26196247
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Extracting drug-enzyme relation from literature as evidence for drug drug interaction.
    Zhang Y; Wu HY; Du J; Xu J; Wang J; Tao C; Li L; Xu H
    J Biomed Semantics; 2016; 7():11. PubMed ID: 26955465
    [TBL] [Abstract][Full Text] [Related]  

  • 47. QSAR Modeling and Prediction of Drug-Drug Interactions.
    Zakharov AV; Varlamova EV; Lagunin AA; Dmitriev AV; Muratov EN; Fourches D; Kuz'min VE; Poroikov VV; Tropsha A; Nicklaus MC
    Mol Pharm; 2016 Feb; 13(2):545-56. PubMed ID: 26669717
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assessment of algorithms for predicting drug-drug interactions via inhibition mechanisms: comparison of dynamic and static models.
    Guest EJ; Rowland-Yeo K; Rostami-Hodjegan A; Tucker GT; Houston JB; Galetin A
    Br J Clin Pharmacol; 2011 Jan; 71(1):72-87. PubMed ID: 21143503
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A proposal for a pharmacokinetic interaction significance classification system (PISCS) based on predicted drug exposure changes and its potential application to alert classifications in product labelling.
    Hisaka A; Kusama M; Ohno Y; Sugiyama Y; Suzuki H
    Clin Pharmacokinet; 2009; 48(10):653-66. PubMed ID: 19743887
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prediction of drug-drug interaction potential using physiologically based pharmacokinetic modeling.
    Min JS; Bae SK
    Arch Pharm Res; 2017 Dec; 40(12):1356-1379. PubMed ID: 29079968
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Predicting potential cancer genes by integrating network properties, sequence features and functional annotations.
    Liu W; Xie H
    Sci China Life Sci; 2013 Aug; 56(8):751-7. PubMed ID: 23838808
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational probing protein-protein interactions targeting small molecules.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2016 Jan; 32(2):226-34. PubMed ID: 26415726
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identifying high risk medications causing potential drug-drug interactions in outpatients: A prescription database study based on an online surveillance system.
    Toivo TM; Mikkola JA; Laine K; Airaksinen M
    Res Social Adm Pharm; 2016; 12(4):559-68. PubMed ID: 26459026
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DPDDI: a deep predictor for drug-drug interactions.
    Feng YH; Zhang SW; Shi JY
    BMC Bioinformatics; 2020 Sep; 21(1):419. PubMed ID: 32972364
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Supervised prediction of drug-induced nephrotoxicity based on interleukin-6 and -8 expression levels.
    Su R; Li Y; Zink D; Loo LH
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S16. PubMed ID: 25521947
    [TBL] [Abstract][Full Text] [Related]  

  • 56. INDI: a computational framework for inferring drug interactions and their associated recommendations.
    Gottlieb A; Stein GY; Oron Y; Ruppin E; Sharan R
    Mol Syst Biol; 2012 Jul; 8():592. PubMed ID: 22806140
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting combinative drug pairs via multiple classifier system with positive samples only.
    Shi JY; Li JX; Mao KT; Cao JB; Lei P; Lu HM; Yiu SM
    Comput Methods Programs Biomed; 2019 Jan; 168():1-10. PubMed ID: 30527128
    [TBL] [Abstract][Full Text] [Related]  

  • 58. AMDE: a novel attention-mechanism-based multidimensional feature encoder for drug-drug interaction prediction.
    Pang S; Zhang Y; Song T; Zhang X; Wang X; Rodriguez-Patón A
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34965586
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DMFDDI: deep multimodal fusion for drug-drug interaction prediction.
    Gan Y; Liu W; Xu G; Yan C; Zou G
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37930025
    [TBL] [Abstract][Full Text] [Related]  

  • 60. AI/ML Models to Predict the Severity of Drug-Induced Liver Injury for Small Molecules.
    Rao M; Nassiri V; Alhambra C; Snoeys J; Van Goethem F; Irrechukwu O; Aleo MD; Geys H; Mitra K; Will Y
    Chem Res Toxicol; 2023 Jul; 36(7):1129-1139. PubMed ID: 37294641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.