BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 2464435)

  • 1. Spatially periodic discrete contact regions in polylysine-induced erythrocyte-yeast adhesion.
    Hewison LA; Coakley WT; Meyer HW
    Cell Biophys; 1988 Oct; 13(2):151-7. PubMed ID: 2464435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial instability and the agglutination of erythrocytes by polylysine.
    Coakley WT; Hewison LA; Tilley D
    Eur Biophys J; 1985; 13(2):123-30. PubMed ID: 4085415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The lateral separation of contacts on erythrocytes agglutinated by polylysine.
    Thomas NE; Coakley WT; Akay G
    Cell Biophys; 1992; 20(2-3):125-47. PubMed ID: 1285296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spreading of wheat germ agglutinin-induced erythrocyte contact by formation of spatially discrete contacts.
    Darmani H; Coakley WT; Hann AC; Brain A
    Cell Biophys; 1990 Jun; 16(3):105-26. PubMed ID: 1698548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real time observations of polylysine, dextran and polyethylene glycol induced mutual adhesion of erythrocytes held in suspension in an ultrasonic standing wave field.
    Tilley D; Coakley WT; Gould RK; Payne SE; Hewison LA
    Eur Biophys J; 1987; 14(8):499-507. PubMed ID: 2441984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane-membrane interactions: parallel membranes or patterned discrete contacts.
    Darmani H; Coakley WT
    Biochim Biophys Acta; 1990 Jan; 1021(2):182-90. PubMed ID: 1689180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of successive modes of erythrocyte stability and instability in the presence of various polymers.
    van Oss CJ; Coakley WT
    Cell Biophys; 1988 Oct; 13(2):141-50. PubMed ID: 2464434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of polymer concentration and molecular weight and of enzymic glycocalyx modification on erythrocyte interaction in dextran solutions.
    Baker AJ; Coakley WT; Gallez D
    Eur Biophys J; 1993; 22(1):53-62. PubMed ID: 7685691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of cell contour analysis to evaluate the affinity between macrophages and glutaraldehyde-treated erythrocytes.
    Mege JL; Capo C; Benoliel AM; Bongrand P
    Biophys J; 1987 Aug; 52(2):177-86. PubMed ID: 3117125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intramembranous particle distribution in human erythrocytes: effects of lysis, glutaraldehyde, and poly-L-lysine.
    Pricam C; Fisher KA; Friend DS
    Anat Rec; 1977 Dec; 189(4):595-607. PubMed ID: 413458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of ultrastructural changes during electrically induced fusion of human erythrocytes.
    Stenger DA; Hui SW
    J Membr Biol; 1986; 93(1):43-53. PubMed ID: 3795261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroporation: high frequency of occurrence of a transient high-permeability state in erythrocytes and intact yeast.
    Weaver JC; Harrison GI; Bliss JG; Mourant JR; Powell KT
    FEBS Lett; 1988 Feb; 229(1):30-4. PubMed ID: 2450045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative estimation of non-lamellar structures in membranes. A 31P-nmr and electron microscopical study of the influence of linolic acid on the erythrocyte membrane.
    Arnold K; Pratsch L; Meyer HW
    Acta Histochem; 1982; 70(2):205-13. PubMed ID: 6810632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic morphology of erythrocytes revealed by cryofixation technique.
    Terada N; Ohno S
    Kaibogaku Zasshi; 1998 Dec; 73(6):587-93. PubMed ID: 9990195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fission yeast, Schizosaccharomyces pombe.
    Mitchison JM
    Bioessays; 1990 Apr; 12(4):189-91. PubMed ID: 2185750
    [No Abstract]   [Full Text] [Related]  

  • 16. The ultrastructure of the erythrocyte cytoskeleton at neutral and reduced pH.
    Timme AH
    J Ultrastruct Res; 1981 Nov; 77(2):199-209. PubMed ID: 7198153
    [No Abstract]   [Full Text] [Related]  

  • 17. Membrane-membrane contact: involvement of interfacial instability in the generation of discrete contacts.
    Coakley WT; Gallez D
    Biosci Rep; 1989 Dec; 9(6):675-91. PubMed ID: 2692722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sample preparation and imaging of erythrocyte cytoskeleton with the atomic force microscopy.
    Liu F; Burgess J; Mizukami H; Ostafin A
    Cell Biochem Biophys; 2003; 38(3):251-70. PubMed ID: 12794267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spherocyte shape transformation and release of tubular nanovesicles in human erythrocytes.
    Iglic A; Veranic P; Jezernik K; Fosnaric M; Kamin B; Hägerstrand H; Kralj-Iglic V
    Bioelectrochemistry; 2004 May; 62(2):159-61. PubMed ID: 15039020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy.
    Mazia D; Schatten G; Sale W
    J Cell Biol; 1975 Jul; 66(1):198-200. PubMed ID: 1095595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.