These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24645350)

  • 21. Integrated Analysis of Seed microRNA and mRNA Transcriptome Reveals Important Functional Genes and microRNA-Targets in the Process of Walnut (
    Zhao X; Yang G; Liu X; Yu Z; Peng S
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic Transcriptome Changes Related to Oil Accumulation in Developing Soybean Seeds.
    Yang S; Miao L; He J; Zhang K; Li Y; Gai J
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31060266
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification, classification and differential expression of oleosin genes in tung tree (Vernicia fordii).
    Cao H; Zhang L; Tan X; Long H; Shockey JM
    PLoS One; 2014; 9(2):e88409. PubMed ID: 24516650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene expression profiling during seed-filling process in peanut with emphasis on oil biosynthesis networks.
    Gupta K; Kayam G; Faigenboim-Doron A; Clevenger J; Ozias-Akins P; Hovav R
    Plant Sci; 2016 Jul; 248():116-27. PubMed ID: 27181953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition.
    Lin P; Wang K; Zhou C; Xie Y; Yao X; Yin H
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29301285
    [No Abstract]   [Full Text] [Related]  

  • 26. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids.
    Liao B; Hao Y; Lu J; Bai H; Guan L; Zhang T
    BMC Genomics; 2018 Mar; 19(1):213. PubMed ID: 29562889
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptomic Analysis Reveals Key Genes Involved in Oil and Linoleic Acid Biosynthesis during
    Nan S; Zhang L; Hu X; Miao X; Han X; Fu H
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445076
    [No Abstract]   [Full Text] [Related]  

  • 28. Oil biosynthesis and transcriptome profiles in developing endosperm and oil characteristic analyses in Paeonia ostii var. lishizhenii.
    Xiu Y; Wu G; Tang W; Peng Z; Bu X; Chao L; Yin X; Xiong J; Zhang H; Zhao X; Ding J; Ma L; Wang H; van Staden J
    J Plant Physiol; 2018 Sep; 228():121-133. PubMed ID: 29902680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptome analysis revealed the dynamic oil accumulation in Symplocos paniculata fruit.
    Liu Q; Sun Y; Chen J; Li P; Li C; Niu G; Jiang L
    BMC Genomics; 2016 Nov; 17(1):929. PubMed ID: 27852215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of Key Genes Involved in Embryo Development and Differential Oil Accumulation in Two Contrasting Maize Genotypes.
    Zhang X; Hong M; Wan H; Luo L; Yu Z; Guo R
    Genes (Basel); 2019 Dec; 10(12):. PubMed ID: 31805727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptomic analysis of American ginseng seeds during the dormancy release process by RNA-Seq.
    Qi J; Sun P; Liao D; Sun T; Zhu J; Li X
    PLoS One; 2015; 10(3):e0118558. PubMed ID: 25790114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Small RNA and degradome profiling involved in seed development and oil synthesis of Brassica napus.
    Wei W; Li G; Jiang X; Wang Y; Ma Z; Niu Z; Wang Z; Geng X
    PLoS One; 2018; 13(10):e0204998. PubMed ID: 30332454
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of differentially expressed genes in seeds of two near-isogenic Brassica napus lines with different oil content.
    Li RJ; Wang HZ; Mao H; Lu YT; Hua W
    Planta; 2006 Sep; 224(4):952-62. PubMed ID: 16575595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds.
    Yin DD; Li SS; Shu QY; Gu ZY; Wu Q; Feng CY; Xu WZ; Wang LS
    Gene; 2018 Aug; 666():72-82. PubMed ID: 29738839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ocsESTdb: a database of oil crop seed EST sequences for comparative analysis and investigation of a global metabolic network and oil accumulation metabolism.
    Ke T; Yu J; Dong C; Mao H; Hua W; Liu S
    BMC Plant Biol; 2015 Jan; 15():19. PubMed ID: 25604238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Camelina seed transcriptome: a tool for meal and oil improvement and translational research.
    Nguyen HT; Silva JE; Podicheti R; Macrander J; Yang W; Nazarenus TJ; Nam JW; Jaworski JG; Lu C; Scheffler BE; Mockaitis K; Cahoon EB
    Plant Biotechnol J; 2013 Aug; 11(6):759-69. PubMed ID: 23551501
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of eIFiso4G1 mutation on seed oil biosynthesis.
    Li Q; Shen W; Zheng Q; Tan Y; Gao J; Shen J; Wei Y; Kunst L; Zou J
    Plant J; 2017 Jun; 90(5):966-978. PubMed ID: 28244172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 24-Epibrassinolide Promotes Fatty Acid Accumulation and the Expression of Related Genes in
    Chen C; Chen H; Han C; Liu Z; Yu F; Wu Q
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012162
    [No Abstract]   [Full Text] [Related]  

  • 39. Transcriptome analysis of the tea oil camellia (Camellia oleifera) reveals candidate drought stress genes.
    Dong B; Wu B; Hong W; Li X; Li Z; Xue L; Huang Y
    PLoS One; 2017; 12(7):e0181835. PubMed ID: 28759610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulatory mechanisms of fatty acids biosynthesis in
    Wu Y; Gao W; Li X; Sun S; Xu J; Shi X; Guo H
    PeerJ; 2022; 10():e14125. PubMed ID: 36213508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.