BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24645446)

  • 1. Competitive effects on mercury removal by an agricultural waste: application to synthetic and natural spiked waters.
    Rocha LS; Lopes CB; Henriques B; Tavares DS; Borges JA; Duarte AC; Pereira E
    Environ Technol; 2014; 35(5-8):661-73. PubMed ID: 24645446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of lead and mercury by rice husk ash.
    Feng Q; Lin Q; Gong F; Sugita S; Shoya M
    J Colloid Interface Sci; 2004 Oct; 278(1):1-8. PubMed ID: 15313631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of chemically modified rice husk for the removal of heavy metals from aqueous solution.
    Kayal N; Sinhia PK; Kundu D
    J Environ Sci Eng; 2010 Jan; 52(1):15-8. PubMed ID: 21114100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk.
    El-Shafey EI
    J Hazard Mater; 2010 Mar; 175(1-3):319-27. PubMed ID: 19883976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorptive removal of Cd(II) from aqueous solution using natural and modified rice husk.
    Ye H; Zhu Q; Du D
    Bioresour Technol; 2010 Jul; 101(14):5175-9. PubMed ID: 20202825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pH and temperature on Hg2+ water decontamination using ETS-4 titanosilicate.
    Lopes CB; Otero M; Lin Z; Silva CM; Pereira E; Rocha J; Duarte AC
    J Hazard Mater; 2010 Mar; 175(1-3):439-44. PubMed ID: 19896771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk.
    Krishnani KK; Meng X; Christodoulatos C; Boddu VM
    J Hazard Mater; 2008 May; 153(3):1222-34. PubMed ID: 18006228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High efficient removal of mercury from aqueous solution by polyaniline/humic acid nanocomposite.
    Zhang Y; Li Q; Sun L; Tang R; Zhai J
    J Hazard Mater; 2010 Mar; 175(1-3):404-9. PubMed ID: 19896766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency of a cleanup technology to remove mercury from natural waters by means of rice husk biowaste: ecotoxicological and chemical approach.
    Rocha LS; Lopes I; Lopes CB; Henriques B; Soares AM; Duarte AC; Pereira E
    Environ Sci Pollut Res Int; 2014; 21(13):8146-56. PubMed ID: 24671395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption potential of rice husk for the removal of 2,4-dichlorophenol from aqueous solutions: kinetic and thermodynamic investigations.
    Akhtar M; Bhanger MI; Iqbal S; Hasany SM
    J Hazard Mater; 2006 Jan; 128(1):44-52. PubMed ID: 16126338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosorptive removal of cadmium from contaminated groundwater and industrial effluents.
    Pandey PK; Verma Y; Choubey S; Pandey M; Chandrasekhar K
    Bioresour Technol; 2008 Jul; 99(10):4420-7. PubMed ID: 17892931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of mercury (II) by dithiocarbamate surface functionalized magnetite particles: application to synthetic and natural spiked waters.
    Figueira P; Lopes CB; Daniel-da-Silva AL; Pereira E; Duarte AC; Trindade T
    Water Res; 2011 Nov; 45(17):5773-84. PubMed ID: 21924455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorption of thallium(I) ions by peat.
    Robalds A; Klavins M; Dreijalte L
    Water Sci Technol; 2013; 68(10):2208-13. PubMed ID: 24292469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of rice straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II) ions in industrial effluents.
    Rocha CG; Zaia DA; Alfaya RV; Alfaya AA
    J Hazard Mater; 2009 Jul; 166(1):383-8. PubMed ID: 19131165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption of cadmium from aqueous solution using pretreated rice husk.
    Kumar U; Bandyopadhyay M
    Bioresour Technol; 2006 Jan; 97(1):104-9. PubMed ID: 15936939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and equilibrium studies on the removal of Cd2+ ions from water using polyacrylamide grafted rice (Oryza sativa) husk and (Tectona grandis) saw dust.
    Sharma N; Kaur K; Kaur S
    J Hazard Mater; 2009 Apr; 163(2-3):1338-44. PubMed ID: 18783881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of the hybrid complexation-ultrafiltration process for metal ion removal from aqueous solutions.
    Zeng J; Ye H; Hu Z
    J Hazard Mater; 2009 Jan; 161(2-3):1491-8. PubMed ID: 18554789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longan shell as novel biomacromolecular sorbent for highly selective removal of lead and mercury ions.
    Huang MR; Li S; Li XG
    J Phys Chem B; 2010 Mar; 114(10):3534-42. PubMed ID: 20175512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk).
    Saeed A; Iqbal M; Akhtar MW
    J Hazard Mater; 2005 Jan; 117(1):65-73. PubMed ID: 15621354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An economically viable method for the removal of selected divalent metal ions from aqueous solutions using activated rice husk.
    Akhtar M; Iqbal S; Kausar A; Bhanger MI; Shaheen MA
    Colloids Surf B Biointerfaces; 2010 Jan; 75(1):149-55. PubMed ID: 19734025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.