BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 24645467)

  • 21. A quantitative speciation model for the adsorption of organic pollutants on activated carbon.
    Grivé M; García D; Domènech C; Richard L; Rojo I; Martínez X; Rovira M
    Water Sci Technol; 2013; 68(6):1370-6. PubMed ID: 24056436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of UV/H2O2 treatment on biofilm formation potential.
    Metz DH; Reynolds K; Meyer M; Dionysiou DD
    Water Res; 2011 Jan; 45(2):497-508. PubMed ID: 20932545
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of bromide and bromate from drinking water using granular activated carbon.
    Zhang YQ; Wu QP; Zhang JM; Yang XH
    J Water Health; 2015 Mar; 13(1):73-8. PubMed ID: 25719467
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon.
    Mondal P; Majumder CB; Mohanty B
    J Hazard Mater; 2008 Feb; 150(3):695-702. PubMed ID: 17574333
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorptive selenite removal from water using iron-coated GAC adsorbents.
    Zhang N; Lin LS; Gang D
    Water Res; 2008 Aug; 42(14):3809-16. PubMed ID: 18694584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative bioregeneration of granular activated carbon loaded with phenol and 2,4-dichlorophenol.
    Vinitnantharat S; Baral A; Ishibashi Y; Ha SR
    Environ Technol; 2001 Mar; 22(3):339-44. PubMed ID: 11346291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of a three-component competitive adsorption model to evaluate and optimize granular activated carbon systems.
    Schideman LC; Snoeyink VL; Mariñas BJ; Ding L; Campos C
    Water Res; 2007 Aug; 41(15):3289-98. PubMed ID: 17572469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of backwashing on nitrification in the biological activated carbon filters used in drinking water treatment.
    Laurent P; Kihn A; Andersson A; Servais P
    Environ Technol; 2003 Mar; 24(3):277-87. PubMed ID: 12703853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In-situ regeneration of saturated granular activated carbon by an iron oxide nanocatalyst.
    Chiu CA; Hristovski K; Huling S; Westerhoff P
    Water Res; 2013 Mar; 47(4):1596-603. PubMed ID: 23298638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of GAC filtration on bacterial regrowth and nitrification in a simulated water main.
    Vahala R; Nieml RM; Kiuru H; Laukkanen R
    J Appl Microbiol; 1998 Dec; 85 Suppl 1():178S-185S. PubMed ID: 21182707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Technico-economic assessment of groundwater treatment by palladium-on-zeolite-catalyst in comparison to GAC fixed bed adsorbers.
    Bayer P; Schüth C
    Water Sci Technol; 2010; 62(3):708-18. PubMed ID: 20706019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of adsorption using granular activated carbon (GAC) for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation.
    Vivek Narayanan N; Ganesan M
    J Hazard Mater; 2009 Jan; 161(1):575-80. PubMed ID: 18485589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biological activation of carbon filters.
    Seredyńska-Sobecka B; Tomaszewska M; Janus M; Morawski AW
    Water Res; 2006 Jan; 40(2):355-63. PubMed ID: 16376966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling of sequential groundwater treatment with zero valent iron and granular activated carbon.
    Bayer P; Finkel M
    J Contam Hydrol; 2005 Jun; 78(1-2):129-46. PubMed ID: 15949610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of MIB and geosmin using granular activated carbon with and without MIEX pre-treatment.
    Drikas M; Dixon M; Morran J
    Water Res; 2009 Dec; 43(20):5151-9. PubMed ID: 19744694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Economical and ecological comparison of granular activated carbon (GAC) adsorber refill strategies.
    Bayer P; Heuer E; Karl U; Finkel M
    Water Res; 2005 May; 39(9):1719-28. PubMed ID: 15899270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterising biofilm development on granular activated carbon used for drinking water production.
    Gibert O; Lefèvre B; Fernández M; Bernat X; Paraira M; Calderer M; Martínez-Lladó X
    Water Res; 2013 Mar; 47(3):1101-10. PubMed ID: 23245544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of autotrophic growth of ammonia-oxidizers associated with granular activated carbon used for drinking water purification by DNA-stable isotope probing.
    Niu J; Kasuga I; Kurisu F; Furumai H; Shigeeda T
    Water Res; 2013 Dec; 47(19):7053-65. PubMed ID: 24200001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genotoxicity and cytotoxicity assessment in lake drinking water produced in a treatment plant.
    Buschini A; Carboni P; Frigerio S; Furlini M; Marabini L; Monarca S; Poli P; Radice S; Rossi C
    Mutagenesis; 2004 Sep; 19(5):341-7. PubMed ID: 15388805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption and bioadsorption of granular activated carbon (GAC) for dissolved organic carbon (DOC) removal in wastewater.
    Xing W; Ngo HH; Kim SH; Guo WS; Hagare P
    Bioresour Technol; 2008 Dec; 99(18):8674-8. PubMed ID: 18511272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.