BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 24645796)

  • 1. Perceptual and locomotor factors affect obstacle avoidance in persons with visuospatial neglect.
    Aravind G; Lamontagne A
    J Neuroeng Rehabil; 2014 Mar; 11():38. PubMed ID: 24645796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of visuospatial neglect on spatial navigation and heading after stroke.
    Aravind G; Lamontagne A
    Ann Phys Rehabil Med; 2018 Jul; 61(4):197-206. PubMed ID: 28602491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual reality-based navigation task to reveal obstacle avoidance performance in individuals with visuospatial neglect.
    Aravind G; Darekar A; Fung J; Lamontagne A
    IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):179-88. PubMed ID: 25420267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual tasking negatively impacts obstacle avoidance abilities in post-stroke individuals with visuospatial neglect: Task complexity matters!
    Aravind G; Lamontagne A
    Restor Neurol Neurosci; 2017; 35(4):423-436. PubMed ID: 28697573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotor circumvention strategies are altered by stroke: I. Obstacle clearance.
    Darekar A; Lamontagne A; Fung J
    J Neuroeng Rehabil; 2017 Jun; 14(1):56. PubMed ID: 28615042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of clinical severity of stroke on the severity and recovery of visuospatial neglect.
    Nijboer TCW; Winters C; Kollen BJ; Kwakkel G
    PLoS One; 2018; 13(7):e0198755. PubMed ID: 29966012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How does the number of targets affect visual search performance in visuospatial neglect?
    Ten Brink AF; Elshout J; Nijboer TCW; Van der Stigchel S
    J Clin Exp Neuropsychol; 2020 Dec; 42(10):1010-1027. PubMed ID: 33148120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the challenges of avoiding collisions with virtual pedestrians using a dual-task paradigm in individuals with chronic moderate to severe traumatic brain injury.
    de Aquino Costa Sousa T; Gagnon IJ; Li KZH; McFadyen BJ; Lamontagne A
    J Neuroeng Rehabil; 2024 May; 21(1):80. PubMed ID: 38755606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing cognitive demand in assessments of visuo-spatial neglect: Testing the concepts of static and dynamic tests.
    Spreij LA; Ten Brink AF; Visser-Meily JMA; Nijboer TCW
    J Clin Exp Neuropsychol; 2020 Sep; 42(7):675-689. PubMed ID: 32791939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic clearance measure to evaluate locomotor and perceptuo-motor strategies used for obstacle circumvention in a virtual environment.
    Darekar A; Lamontagne A; Fung J
    Hum Mov Sci; 2015 Apr; 40():359-71. PubMed ID: 25682376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locomotor circumvention strategies are altered by stroke: II. Postural Coordination.
    Darekar A; Lamontagne A; Fung J
    J Neuroeng Rehabil; 2017 Jun; 14(1):57. PubMed ID: 28615080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual processing features in patients with visual spatial neglect recovering from right-hemispheric stroke.
    Ye L; Cao L; Xie H; Shan G; Hu J; Du J; Song W
    Neurosci Lett; 2020 Jan; 714():134528. PubMed ID: 31585212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visuospatial neglect is more severe when stimulus density is large.
    Nijboer TCW; Van Der Stigchel S
    J Clin Exp Neuropsychol; 2019 May; 41(4):399-410. PubMed ID: 30727817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalizability of the Maximum Proportional Recovery Rule to Visuospatial Neglect Early Poststroke.
    Winters C; van Wegen EE; Daffertshofer A; Kwakkel G
    Neurorehabil Neural Repair; 2017 Apr; 31(4):334-342. PubMed ID: 27913798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulated driving: The added value of dynamic testing in the assessment of visuo-spatial neglect after stroke.
    Spreij LA; Ten Brink AF; Visser-Meily JMA; Nijboer TCW
    J Neuropsychol; 2020 Mar; 14(1):28-45. PubMed ID: 30325578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between visuospatial neglect, spatial working memory and search behavior.
    Fabius J; Ten Brink AF; Van der Stigchel S; Nijboer TCW
    J Clin Exp Neuropsychol; 2020 Apr; 42(3):251-262. PubMed ID: 31900083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-stroke visual neglect affects goal-directed locomotion in different perceptuo-cognitive conditions and on a wide visual spectrum.
    Ogourtsova T; Archambault PS; Lamontagne A
    Restor Neurol Neurosci; 2018; 36(3):313-331. PubMed ID: 29782328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contralesional cross-over in chronic neglect: visual search patterns reveal neglect of the ipsilesional hemispace.
    Gall C; Günther T; Fuhrmans F; Sabel BA
    NeuroRehabilitation; 2012; 31(2):171-84. PubMed ID: 22951712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cingulate neglect in humans: disruption of contralesional reward learning in right brain damage.
    Lecce F; Rotondaro F; Bonnì S; Carlesimo A; Thiebaut de Schotten M; Tomaiuolo F; Doricchi F
    Cortex; 2015 Jan; 62():73-88. PubMed ID: 25239855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peripheral Prisms Improve Obstacle Detection during Simulated Walking for Patients with Left Hemispatial Neglect and Hemianopia.
    Houston KE; Bowers AR; Peli E; Woods RL
    Optom Vis Sci; 2018 Sep; 95(9):795-804. PubMed ID: 30169355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.