These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics. Im H; Sutherland JN; Maynard JA; Oh SH Anal Chem; 2012 Feb; 84(4):1941-7. PubMed ID: 22235895 [TBL] [Abstract][Full Text] [Related]
6. Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance. Jia P; Jiang H; Sabarinathan J; Yang J Nanotechnology; 2013 May; 24(19):195501. PubMed ID: 23579785 [TBL] [Abstract][Full Text] [Related]
7. Large-area gold nanohole arrays fabricated by one-step method for surface plasmon resonance biochemical sensing. Qi H; Niu L; Zhang J; Chen J; Wang S; Yang J; Guo S; Lawson T; Shi B; Song C Sci China Life Sci; 2018 Apr; 61(4):476-482. PubMed ID: 29675550 [TBL] [Abstract][Full Text] [Related]
8. Chip-based digital surface plasmon resonance sensing platform for ultrasensitive biomolecular detection. Pan MY; Lee KL; Wang L; Wei PK Biosens Bioelectron; 2017 May; 91():580-587. PubMed ID: 28088751 [TBL] [Abstract][Full Text] [Related]
9. Optofluidic concentration: plasmonic nanostructure as concentrator and sensor. Escobedo C; Brolo AG; Gordon R; Sinton D Nano Lett; 2012 Mar; 12(3):1592-6. PubMed ID: 22352888 [TBL] [Abstract][Full Text] [Related]
10. A novel micromachined Fabry-Perot interferometer integrating nano-holes and dielectrophoresis for enhanced biochemical sensing. Tu L; Huang L; Wang W Biosens Bioelectron; 2019 Feb; 127():19-24. PubMed ID: 30583282 [TBL] [Abstract][Full Text] [Related]
11. Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation. Yang JC; Ji J; Hogle JM; Larson DN Biosens Bioelectron; 2009 Apr; 24(8):2334-8. PubMed ID: 19157848 [TBL] [Abstract][Full Text] [Related]
12. Dielectrophoretic trapping of nanosized biomolecules on plasmonic nanohole arrays for biosensor applications: simple fabrication and visible-region detection. Fujiwara S; Hata M; Onohara I; Kawasaki D; Sueyoshi K; Hisamoto H; Suzuki M; Yasukawa T; Endo T RSC Adv; 2023 Jul; 13(31):21118-21126. PubMed ID: 37449027 [TBL] [Abstract][Full Text] [Related]
13. Performance improvement of plasmonic sensors using a combination of AC electrokinetic effects for (bio)target capture. Avenas Q; Moreau J; Costella M; Maalaoui A; Souifi A; Charette P; Marchalot J; Frénéa-Robin M; Canva M Electrophoresis; 2019 May; 40(10):1426-1435. PubMed ID: 30786069 [TBL] [Abstract][Full Text] [Related]
14. Nanoparticle-Enhanced Plasmonic Biosensor for Digital Biomarker Detection in a Microarray. Belushkin A; Yesilkoy F; Altug H ACS Nano; 2018 May; 12(5):4453-4461. PubMed ID: 29715005 [TBL] [Abstract][Full Text] [Related]
16. Plasmonic nanohole arrays for label-free kinetic biosensing in a lipid membrane environment. Lesuffleur A; Lim KS; Lindquist NC; Im H; Warrington AE; Rodriguez M; Oh SH Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1481-4. PubMed ID: 19963504 [TBL] [Abstract][Full Text] [Related]
17. Tuning the 3D plasmon field of nanohole arrays. Couture M; Liang Y; Poirier Richard HP; Faid R; Peng W; Masson JF Nanoscale; 2013 Dec; 5(24):12399-408. PubMed ID: 24162773 [TBL] [Abstract][Full Text] [Related]
18. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering. Zheng P; Cushing SK; Suri S; Wu N Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930 [TBL] [Abstract][Full Text] [Related]