These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 24646075)

  • 1. Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays.
    Barik A; Otto LM; Yoo D; Jose J; Johnson TW; Oh SH
    Nano Lett; 2014; 14(4):2006-12. PubMed ID: 24646075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Sensing on Symmetric Nanohole Arrays Supporting High-Q Hybrid Modes and Reflection Geometry.
    Vala M; Ertsgaard CT; Wittenberg NJ; Oh SH
    ACS Sens; 2019 Dec; 4(12):3265-3274. PubMed ID: 31762262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser-illuminated nanohole arrays for multiplex plasmonic microarray sensing.
    Lesuffleur A; Im H; Lindquist NC; Lim KS; Oh SH
    Opt Express; 2008 Jan; 16(1):219-24. PubMed ID: 18521151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Super-Period Gold Nanodisc Grating-Enabled Surface Plasmon Resonance Spectrometer Sensor.
    Tian X; Guo H; Bhatt KH; Zhao SQ; Wang Y; Guo J
    Appl Spectrosc; 2015 Oct; 69(10):1182-9. PubMed ID: 26449812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics.
    Im H; Sutherland JN; Maynard JA; Oh SH
    Anal Chem; 2012 Feb; 84(4):1941-7. PubMed ID: 22235895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance.
    Jia P; Jiang H; Sabarinathan J; Yang J
    Nanotechnology; 2013 May; 24(19):195501. PubMed ID: 23579785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-area gold nanohole arrays fabricated by one-step method for surface plasmon resonance biochemical sensing.
    Qi H; Niu L; Zhang J; Chen J; Wang S; Yang J; Guo S; Lawson T; Shi B; Song C
    Sci China Life Sci; 2018 Apr; 61(4):476-482. PubMed ID: 29675550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chip-based digital surface plasmon resonance sensing platform for ultrasensitive biomolecular detection.
    Pan MY; Lee KL; Wang L; Wei PK
    Biosens Bioelectron; 2017 May; 91():580-587. PubMed ID: 28088751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optofluidic concentration: plasmonic nanostructure as concentrator and sensor.
    Escobedo C; Brolo AG; Gordon R; Sinton D
    Nano Lett; 2012 Mar; 12(3):1592-6. PubMed ID: 22352888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel micromachined Fabry-Perot interferometer integrating nano-holes and dielectrophoresis for enhanced biochemical sensing.
    Tu L; Huang L; Wang W
    Biosens Bioelectron; 2019 Feb; 127():19-24. PubMed ID: 30583282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation.
    Yang JC; Ji J; Hogle JM; Larson DN
    Biosens Bioelectron; 2009 Apr; 24(8):2334-8. PubMed ID: 19157848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectrophoretic trapping of nanosized biomolecules on plasmonic nanohole arrays for biosensor applications: simple fabrication and visible-region detection.
    Fujiwara S; Hata M; Onohara I; Kawasaki D; Sueyoshi K; Hisamoto H; Suzuki M; Yasukawa T; Endo T
    RSC Adv; 2023 Jul; 13(31):21118-21126. PubMed ID: 37449027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance improvement of plasmonic sensors using a combination of AC electrokinetic effects for (bio)target capture.
    Avenas Q; Moreau J; Costella M; Maalaoui A; Souifi A; Charette P; Marchalot J; Frénéa-Robin M; Canva M
    Electrophoresis; 2019 May; 40(10):1426-1435. PubMed ID: 30786069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle-Enhanced Plasmonic Biosensor for Digital Biomarker Detection in a Microarray.
    Belushkin A; Yesilkoy F; Altug H
    ACS Nano; 2018 May; 12(5):4453-4461. PubMed ID: 29715005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples.
    Genslein C; Hausler P; Kirchner EM; Bierl R; Baeumner AJ; Hirsch T
    Beilstein J Nanotechnol; 2016; 7():1564-1573. PubMed ID: 28144507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic nanohole arrays for label-free kinetic biosensing in a lipid membrane environment.
    Lesuffleur A; Lim KS; Lindquist NC; Im H; Warrington AE; Rodriguez M; Oh SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1481-4. PubMed ID: 19963504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the 3D plasmon field of nanohole arrays.
    Couture M; Liang Y; Poirier Richard HP; Faid R; Peng W; Masson JF
    Nanoscale; 2013 Dec; 5(24):12399-408. PubMed ID: 24162773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.
    Zheng P; Cushing SK; Suri S; Wu N
    Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays.
    Gao H; Henzie J; Odom TW
    Nano Lett; 2006 Sep; 6(9):2104-8. PubMed ID: 16968034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic crystal and plasmonic nanohole based label-free biodetection.
    Cetin AE; Topkaya SN
    Biosens Bioelectron; 2019 May; 132():196-202. PubMed ID: 30875631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.