BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 24646164)

  • 41. Distinct composition signatures of archaeal and bacterial phylotypes in the Wanda Glacier forefield, Antarctic Peninsula.
    Pessi IS; Osorio-Forero C; Gálvez EJ; Simões FL; Simões JC; Junca H; Macedo AJ
    FEMS Microbiol Ecol; 2015 Jan; 91(1):1-10. PubMed ID: 25764530
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Taxonomic and Functional Diversity of Soil and Hypolithic Microbial Communities in Miers Valley, McMurdo Dry Valleys, Antarctica.
    Wei ST; Lacap-Bugler DC; Lau MC; Caruso T; Rao S; de Los Rios A; Archer SK; Chiu JM; Higgins C; Van Nostrand JD; Zhou J; Hopkins DW; Pointing SB
    Front Microbiol; 2016; 7():1642. PubMed ID: 27812351
    [TBL] [Abstract][Full Text] [Related]  

  • 43. One-dimensional TRFLP-SSCP is an effective DNA fingerprinting strategy for soil Archaea that is able to simultaneously differentiate broad taxonomic clades based on terminal fragment length polymorphisms and closely related sequences based on single stranded conformation polymorphisms.
    Swanson CA; Sliwinski MK
    J Microbiol Methods; 2013 Sep; 94(3):317-24. PubMed ID: 23880418
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High archaeal richness in the water column of a freshwater sulfurous karstic lake along an interannual study.
    Llirós M; Casamayor EO; Borrego C
    FEMS Microbiol Ecol; 2008 Nov; 66(2):331-42. PubMed ID: 18754782
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional ecology of an Antarctic Dry Valley.
    Chan Y; Van Nostrand JD; Zhou J; Pointing SB; Farrell RL
    Proc Natl Acad Sci U S A; 2013 May; 110(22):8990-5. PubMed ID: 23671121
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High Archaea diversity in Varvara hot spring, Bulgaria.
    Ivanova I; Atanassov I; Lyutskanova D; Stoilova-Disheva M; Dimitrova D; Tomova I; Derekova A; Radeva G; Buchvarova V; Kambourova M
    J Basic Microbiol; 2011 Apr; 51(2):163-72. PubMed ID: 21077120
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Diversity and distribution of Archaea in global estuarine ecosystems.
    Liu X; Pan J; Liu Y; Li M; Gu JD
    Sci Total Environ; 2018 Oct; 637-638():349-358. PubMed ID: 29753224
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fungal communities in soils along a vegetative ecotone.
    Karst J; Piculell B; Brigham C; Booth M; Hoeksema JD
    Mycologia; 2013; 105(1):61-70. PubMed ID: 22802393
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Diversity of soil archaea in Tibetan Mila Mountains].
    Meng X; Mao Z; Chen G; Yang Y; Xie B
    Wei Sheng Wu Xue Bao; 2009 Aug; 49(8):994-1002. PubMed ID: 19835159
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Diversity of Archaea in Brazilian savanna soils.
    Catão E; Castro AP; Barreto CC; Krüger RH; Kyaw CM
    Arch Microbiol; 2013 Jul; 195(7):507-12. PubMed ID: 23515915
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biodiversity of methanogenic and other archaea in the permanently frozen Lake Fryxell, Antarctica.
    Karr EA; Ng JM; Belchik SM; Sattley WM; Madigan MT; Achenbach LA
    Appl Environ Microbiol; 2006 Feb; 72(2):1663-6. PubMed ID: 16461723
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The biogeography of soil archaeal communities on the eastern Tibetan Plateau.
    Shi Y; Adams JM; Ni Y; Yang T; Jing X; Chen L; He JS; Chu H
    Sci Rep; 2016 Dec; 6():38893. PubMed ID: 27958324
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Archaeal communities in mangrove soil characterized by 16S rRNA gene clones.
    Yan B; Hong K; Yu ZN
    J Microbiol; 2006 Oct; 44(5):566-71. PubMed ID: 17082752
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The response of archaeal species to seasonal variables in a subtropical aerated soil: insight into the low abundant methanogens.
    Xie W; Jiao N; Ma C; Fang S; Phelps TJ; Zhu R; Zhang C
    Appl Microbiol Biotechnol; 2017 Aug; 101(16):6505-6515. PubMed ID: 28555278
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing.
    Galand PE; Casamayor EO; Kirchman DL; Potvin M; Lovejoy C
    ISME J; 2009 Jul; 3(7):860-9. PubMed ID: 19322244
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Environmental microarray analyses of Antarctic soil microbial communities.
    Yergeau E; Schoondermark-Stolk SA; Brodie EL; Déjean S; DeSantis TZ; Gonçalves O; Piceno YM; Andersen GL; Kowalchuk GA
    ISME J; 2009 Mar; 3(3):340-51. PubMed ID: 19020556
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential response of archaeal groups to land use change in an acidic red soil.
    Shen JP; Cao P; Hu HW; He JZ
    Sci Total Environ; 2013 Sep; 461-462():742-9. PubMed ID: 23774250
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types.
    Donovan SE; Purdy KJ; Kane MD; Eggleton P
    Appl Environ Microbiol; 2004 Jul; 70(7):3884-92. PubMed ID: 15240259
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica.
    Teixeira LC; Peixoto RS; Cury JC; Sul WJ; Pellizari VH; Tiedje J; Rosado AS
    ISME J; 2010 Aug; 4(8):989-1001. PubMed ID: 20357834
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Copper Pollution Increases the Resistance of Soil Archaeal Community to Changes in Water Regime.
    Li J; Liu YR; Cui LJ; Hu HW; Wang JT; He JZ
    Microb Ecol; 2017 Nov; 74(4):877-887. PubMed ID: 28492987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.