BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24646179)

  • 1. Expanded cellular amino acid pools containing phosphoserine, phosphothreonine, and phosphotyrosine.
    Steinfeld JB; Aerni HR; Rogulina S; Liu Y; Rinehart J
    ACS Chem Biol; 2014 May; 9(5):1104-12. PubMed ID: 24646179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanding the genetic code of Escherichia coli with phosphotyrosine.
    Fan C; Ip K; Söll D
    FEBS Lett; 2016 Sep; 590(17):3040-7. PubMed ID: 27477338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog.
    Rogerson DT; Sachdeva A; Wang K; Haq T; Kazlauskaite A; Hancock SM; Huguenin-Dezot N; Muqit MM; Fry AM; Bayliss R; Chin JW
    Nat Chem Biol; 2015 Jul; 11(7):496-503. PubMed ID: 26030730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing.
    Zhang MS; Brunner SF; Huguenin-Dezot N; Liang AD; Schmied WH; Rogerson DT; Chin JW
    Nat Methods; 2017 Jul; 14(7):729-736. PubMed ID: 28553966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the genetic code of Escherichia coli with phosphoserine.
    Park HS; Hohn MJ; Umehara T; Guo LT; Osborne EM; Benner J; Noren CJ; Rinehart J; Söll D
    Science; 2011 Aug; 333(6046):1151-4. PubMed ID: 21868676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion.
    Heinemann IU; Rovner AJ; Aerni HR; Rogulina S; Cheng L; Olds W; Fischer JT; Söll D; Isaacs FJ; Rinehart J
    FEBS Lett; 2012 Oct; 586(20):3716-22. PubMed ID: 22982858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EFFICIENT GENERATION OF PROTEINS WITH SITE-SPECIFIC PHOSPHOSERINES.
    Strack R
    Nat Methods; 2015 Aug; 12(8):702-3. PubMed ID: 26451426
    [No Abstract]   [Full Text] [Related]  

  • 8. A rapid microdetermination of phosphoserine, phosphothreonine, and phosphotyrosine in proteins by automatic cation exchange on a conventional amino acid analyzer.
    Capony JP; Demaille JG
    Anal Biochem; 1983 Jan; 128(1):206-12. PubMed ID: 6189415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An efficient system for incorporation of unnatural amino acids in response to the four-base codon AGGA in Escherichia coli.
    Lee BS; Kim S; Ko BJ; Yoo TH
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt B):3016-3023. PubMed ID: 28212794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibodies and radioimmunoassays for phosphoserine, phosphothreonine and phosphotyrosine. Serologic specificities and levels of the phosphoamino acids in cytoplasmic fractions of rat tissues.
    Levine L; Gjika HB; Van Vunakis H
    J Immunol Methods; 1989 Nov; 124(2):239-49. PubMed ID: 2480980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome.
    Neumann H; Wang K; Davis L; Garcia-Alai M; Chin JW
    Nature; 2010 Mar; 464(7287):441-4. PubMed ID: 20154731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and Inexpensive Evaluation of Nonstandard Amino Acid Incorporation in Escherichia coli.
    Monk JW; Leonard SP; Brown CW; Hammerling MJ; Mortensen C; Gutierrez AE; Shin NY; Watkins E; Mishler DM; Barrick JE
    ACS Synth Biol; 2017 Jan; 6(1):45-54. PubMed ID: 27648665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory effect of regucalcin on protein phosphatase activity in the nuclei of rat kidney cortex.
    Morooka Y; Yamaguchi M
    J Cell Biochem; 2001 Jun 26-Jul 25; 83(1):111-20. PubMed ID: 11500959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies for nonradioactive methods in the localization of phosphorylated amino acids in proteins.
    Meyer HE; Eisermann B; Heber M; Hoffmann-Posorske E; Korte H; Weigt C; Wegner A; Hutton T; Donella-Deana A; Perich JW
    FASEB J; 1993 Jun; 7(9):776-82. PubMed ID: 7687226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective and Site-Specific Incorporation of Nonstandard Amino Acids Within Proteins for Therapeutic Applications.
    Butler ND; Kunjapur AM
    Methods Mol Biol; 2024; 2720():35-53. PubMed ID: 37775656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. tRNA
    Tharp JM; Ehnbom A; Liu WR
    RNA Biol; 2018; 15(4-5):441-452. PubMed ID: 28837402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recoded organisms engineered to depend on synthetic amino acids.
    Rovner AJ; Haimovich AD; Katz SR; Li Z; Grome MW; Gassaway BM; Amiram M; Patel JR; Gallagher RR; Rinehart J; Isaacs FJ
    Nature; 2015 Feb; 518(7537):89-93. PubMed ID: 25607356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Misacylation of yeast amber suppressor tRNA(Tyr) by E. coli lysyl-tRNA synthetase and its effective repression by genetic engineering of the tRNA sequence.
    Fukunaga J; Yokogawa T; Ohno S; Nishikawa K
    J Biochem; 2006 Apr; 139(4):689-96. PubMed ID: 16672269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. tRNA engineering for manipulating genetic code.
    Katoh T; Iwane Y; Suga H
    RNA Biol; 2018; 15(4-5):453-460. PubMed ID: 28722545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid discovery and evolution of orthogonal aminoacyl-tRNA synthetase-tRNA pairs.
    Cervettini D; Tang S; Fried SD; Willis JCW; Funke LFH; Colwell LJ; Chin JW
    Nat Biotechnol; 2020 Aug; 38(8):989-999. PubMed ID: 32284585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.