These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24646222)

  • 1. Centenary Award and Sir Frederick Gowland Hopkins Memorial Lecture. Protein folding, structure prediction and design.
    Baker D
    Biochem Soc Trans; 2014 Apr; 42(2):225-9. PubMed ID: 24646222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting protein structures with a multiplayer online game.
    Cooper S; Khatib F; Treuille A; Barbero J; Lee J; Beenen M; Leaver-Fay A; Baker D; Popović Z; Players F
    Nature; 2010 Aug; 466(7307):756-60. PubMed ID: 20686574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contact order and ab initio protein structure prediction.
    Bonneau R; Ruczinski I; Tsai J; Baker D
    Protein Sci; 2002 Aug; 11(8):1937-44. PubMed ID: 12142448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in Protein Super-Secondary Structure Prediction and Application to Protein Structure Prediction.
    MacCarthy E; Perry D; Kc DB
    Methods Mol Biol; 2019; 1958():15-45. PubMed ID: 30945212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foldit Standalone: a video game-derived protein structure manipulation interface using Rosetta.
    Kleffner R; Flatten J; Leaver-Fay A; Baker D; Siegel JB; Khatib F; Cooper S
    Bioinformatics; 2017 Sep; 33(17):2765-2767. PubMed ID: 28481970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home.
    Das R; Qian B; Raman S; Vernon R; Thompson J; Bradley P; Khare S; Tyka MD; Bhat D; Chivian D; Kim DE; Sheffler WH; Malmström L; Wollacott AM; Wang C; Andre I; Baker D
    Proteins; 2007; 69 Suppl 8():118-28. PubMed ID: 17894356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rosetta predictions in CASP5: successes, failures, and prospects for complete automation.
    Bradley P; Chivian D; Meiler J; Misura KM; Rohl CA; Schief WR; Wedemeyer WJ; Schueler-Furman O; Murphy P; Schonbrun J; Strauss CE; Baker D
    Proteins; 2003; 53 Suppl 6():457-68. PubMed ID: 14579334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel model-based on FCM-LM algorithm for prediction of protein folding rate.
    Liu L; Ma M; Cui J
    J Bioinform Comput Biol; 2017 Aug; 15(4):1750012. PubMed ID: 28513252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced alphabet for protein folding prediction.
    Huang JT; Wang T; Huang SR; Li X
    Proteins; 2015 Apr; 83(4):631-9. PubMed ID: 25641420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Heuristic Algorithm for Protein Folding in the HP Model.
    Traykov M; Angelov S; Yanev N
    J Comput Biol; 2016 Aug; 23(8):662-8. PubMed ID: 27153764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Algorithm discovery by protein folding game players.
    Khatib F; Cooper S; Tyka MD; Xu K; Makedon I; Popovic Z; Baker D; Players F
    Proc Natl Acad Sci U S A; 2011 Nov; 108(47):18949-53. PubMed ID: 22065763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phosphorylation of proteins: a major mechanism for biological regulation. Fourteenth Sir Frederick Gowland Hopkins memorial lecture.
    Krebs EG
    Biochem Soc Trans; 1985 Oct; 13(5):813-20. PubMed ID: 2998902
    [No Abstract]   [Full Text] [Related]  

  • 13. Computational protein design with backbone plasticity.
    MacDonald JT; Freemont PS
    Biochem Soc Trans; 2016 Oct; 44(5):1523-1529. PubMed ID: 27911735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of evolutionary information into Rosetta comparative modeling.
    Thompson J; Baker D
    Proteins; 2011 Aug; 79(8):2380-8. PubMed ID: 21638331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An introduction to protein contact prediction.
    Hamilton N; Huber T
    Methods Mol Biol; 2008; 453():87-104. PubMed ID: 18712298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolved cellular automata for protein secondary structure prediction imitate the determinants for folding observed in nature.
    Chopra P; Bender A
    In Silico Biol; 2007; 7(1):87-93. PubMed ID: 17688429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft Computing Techniques for the Protein Folding Problem on High Performance Computing Architectures.
    Llanes A; Muñoz A; Bueno-Crespo A; García-Valverde T; Sánchez A; Arcas-Túnez F; Pérez-Sánchez H; Cecilia JM
    Curr Drug Targets; 2016; 17(14):1626-1648. PubMed ID: 26844561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring folding free energy landscapes using computational protein design.
    Kuhlman B; Baker D
    Curr Opin Struct Biol; 2004 Feb; 14(1):89-95. PubMed ID: 15102454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced Fragment Diversity for Alpha and Alpha-Beta Protein Structure Prediction using Rosetta.
    Abbass J; Nebel JC
    Protein Pept Lett; 2017; 24(3):215-222. PubMed ID: 27993124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinatorial docking approach for structure prediction of large proteins and multi-molecular assemblies.
    Inbar Y; Benyamini H; Nussinov R; Wolfson HJ
    Phys Biol; 2005 Nov; 2(4):S156-65. PubMed ID: 16280621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.