BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 24646258)

  • 1. Methylglyoxal and glyoxalase I in atherosclerosis.
    Hanssen NM; Stehouwer CD; Schalkwijk CG
    Biochem Soc Trans; 2014 Apr; 42(2):443-9. PubMed ID: 24646258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype.
    Hanssen NM; Wouters K; Huijberts MS; Gijbels MJ; Sluimer JC; Scheijen JL; Heeneman S; Biessen EA; Daemen MJ; Brownlee M; de Kleijn DP; Stehouwer CD; Pasterkamp G; Schalkwijk CG
    Eur Heart J; 2014 May; 35(17):1137-46. PubMed ID: 24126878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glyoxalase 1 overexpression does not affect atherosclerotic lesion size and severity in ApoE-/- mice with or without diabetes.
    Hanssen NM; Brouwers O; Gijbels MJ; Wouters K; Wijnands E; Cleutjens JP; De Mey JG; Miyata T; Biessen EA; Stehouwer CD; Schalkwijk CG
    Cardiovasc Res; 2014 Oct; 104(1):160-70. PubMed ID: 25139743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glyoxalase I (Glo1) and its metabolites in vascular disease.
    Wortmann M; Peters AS; Hakimi M; Böckler D; Dihlmann S
    Biochem Soc Trans; 2014 Apr; 42(2):528-33. PubMed ID: 24646273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases.
    Maessen DE; Stehouwer CD; Schalkwijk CG
    Clin Sci (Lond); 2015 Jun; 128(12):839-61. PubMed ID: 25818485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Glyoxalase-1 Knockdown Does Not Have Major Short Term Effects on Energy Expenditure and Atherosclerosis in Mice.
    Wortmann M; Hakimi M; Fleming T; Peters AS; Sijmonsma TP; Herzig S; Nawroth PP; Böckler D; Dihlmann S
    J Diabetes Res; 2016; 2016():2981639. PubMed ID: 26788517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The glyoxalase pathway: the first hundred years... and beyond.
    Sousa Silva M; Gomes RA; Ferreira AE; Ponces Freire A; Cordeiro C
    Biochem J; 2013 Jul; 453(1):1-15. PubMed ID: 23763312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylglyoxal-derived advanced glycation end products contribute to negative cardiac remodeling and dysfunction post-myocardial infarction.
    Blackburn NJR; Vulesevic B; McNeill B; Cimenci CE; Ahmadi A; Gonzalez-Gomez M; Ostojic A; Zhong Z; Brownlee M; Beisswenger PJ; Milne RW; Suuronen EJ
    Basic Res Cardiol; 2017 Sep; 112(5):57. PubMed ID: 28864889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular AGE-ing by methylglyoxal: the past, the present and the future.
    Schalkwijk CG
    Diabetologia; 2015 Aug; 58(8):1715-9. PubMed ID: 25962521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevention of dicarbonyl-mediated advanced glycation by glyoxalases: implication in skin aging.
    Radjei S; Friguet B; Nizard C; Petropoulos I
    Biochem Soc Trans; 2014 Apr; 42(2):518-22. PubMed ID: 24646271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Implication of methylglyoxal in diabetes mellitus].
    Artenie A; Artenie R; Ungureanu D; Haulică I; Artenie V
    Rev Med Chir Soc Med Nat Iasi; 2003; 107(4):727-32. PubMed ID: 14756009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators.
    He Y; Zhou C; Huang M; Tang C; Liu X; Yue Y; Diao Q; Zheng Z; Liu D
    Biomed Pharmacother; 2020 Nov; 131():110663. PubMed ID: 32858501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylglyoxal-Glyoxalase 1 Balance: The Root of Vascular Damage.
    Nigro C; Leone A; Raciti GA; Longo M; Mirra P; Formisano P; Beguinot F; Miele C
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28106778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The role of methylglyoxal metabolism in type-2 diabetes and its complications].
    Kender Z; Torzsa P; Grolmusz K V; Patócs A; Lichthammer A; Veresné Bálint M; Rácz K; Reismann P
    Orv Hetil; 2012 Apr; 153(15):574-85. PubMed ID: 22472358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible role of methylglyoxal and glyoxalase in arthritis.
    Ahmed U; Thornalley PJ; Rabbani N
    Biochem Soc Trans; 2014 Apr; 42(2):538-42. PubMed ID: 24646275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathophysiological role of the glyoxalase system in renal hypoxic injury.
    Kumagai T; Nangaku M; Inagi R
    Ann N Y Acad Sci; 2008 Apr; 1126():265-7. PubMed ID: 18448828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reducing methylglyoxal as a therapeutic target for diabetic heart disease.
    Vulesevic B; Milne RW; Suuronen EJ
    Biochem Soc Trans; 2014 Apr; 42(2):523-7. PubMed ID: 24646272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maillard reactions in lens proteins: methylglyoxal-mediated modifications in the rat lens.
    Shamsi FA; Sharkey E; Creighton D; Nagaraj RH
    Exp Eye Res; 2000 Mar; 70(3):369-80. PubMed ID: 10712823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis.
    Shinohara M; Thornalley PJ; Giardino I; Beisswenger P; Thorpe SR; Onorato J; Brownlee M
    J Clin Invest; 1998 Mar; 101(5):1142-7. PubMed ID: 9486985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation and characterization of mouse knockout for glyoxalase 1.
    Jang S; Kwon DM; Kwon K; Park C
    Biochem Biophys Res Commun; 2017 Aug; 490(2):460-465. PubMed ID: 28623132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.