These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 24646264)

  • 1. Bacterial glyoxalase I enzymes: structural and biochemical investigations.
    Honek JF
    Biochem Soc Trans; 2014 Apr; 42(2):479-84. PubMed ID: 24646264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial glyoxalase enzymes.
    Suttisansanee U; Honek JF
    Semin Cell Dev Biol; 2011 May; 22(3):285-92. PubMed ID: 21310258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct classes of glyoxalase I: metal specificity of the Yersinia pestis, Pseudomonas aeruginosa and Neisseria meningitidis enzymes.
    Sukdeo N; Clugston SL; Daub E; Honek JF
    Biochem J; 2004 Nov; 384(Pt 1):111-7. PubMed ID: 15270717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the structure of Escherichia coli glyoxalase I suggests a structural basis for differential metal activation.
    He MM; Clugston SL; Honek JF; Matthews BW
    Biochemistry; 2000 Aug; 39(30):8719-27. PubMed ID: 10913283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas aeruginosa contains multiple glyoxalase I-encoding genes from both metal activation classes.
    Sukdeo N; Honek JF
    Biochim Biophys Acta; 2007 Jun; 1774(6):756-63. PubMed ID: 17513180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis thaliana Contains Both Ni2+ and Zn2+ Dependent Glyoxalase I Enzymes and Ectopic Expression of the Latter Contributes More towards Abiotic Stress Tolerance in E. coli.
    Jain M; Batth R; Kumari S; Mustafiz A
    PLoS One; 2016; 11(7):e0159348. PubMed ID: 27415831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unique Ni2+ -dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response.
    Mustafiz A; Ghosh A; Tripathi AK; Kaur C; Ganguly AK; Bhavesh NS; Tripathi JK; Pareek A; Sopory SK; Singla-Pareek SL
    Plant J; 2014 Jun; 78(6):951-63. PubMed ID: 24661284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glyoxalase diversity in parasitic protists.
    Deponte M
    Biochem Soc Trans; 2014 Apr; 42(2):473-8. PubMed ID: 24646263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure of a homodimeric Pseudomonas glyoxalase I enzyme reveals asymmetric metallation commensurate with half-of-sites activity.
    Bythell-Douglas R; Suttisansanee U; Flematti GR; Challenor M; Lee M; Panjikar S; Honek JF; Bond CS
    Chemistry; 2015 Jan; 21(2):541-4. PubMed ID: 25411134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel approach for structural identification of protein family: glyoxalase I.
    Kargatov AM; Boshkova EA; Chirgadze YN
    J Biomol Struct Dyn; 2018 Aug; 36(10):2699-2712. PubMed ID: 28805540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical and immunochemical characterization of Brassica juncea glyoxalase I.
    Deswal R; Sopory SK
    Phytochemistry; 1998 Dec; 49(8):2245-53. PubMed ID: 9887525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ni2+-activated glyoxalase I from Escherichia coli: substrate specificity, kinetic isotope effects and evolution within the βαβββ superfamily.
    Mullings KY; Sukdeo N; Suttisansanee U; Ran Y; Honek JF
    J Inorg Biochem; 2012 Mar; 108():133-40. PubMed ID: 22173092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristic Variations and Similarities in Biochemical, Molecular, and Functional Properties of Glyoxalases across Prokaryotes and Eukaryotes.
    Kaur C; Sharma S; Hasan MR; Pareek A; Singla-Pareek SL; Sopory SK
    Int J Mol Sci; 2017 Mar; 18(4):. PubMed ID: 28358304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulating glyoxalase I metal selectivity by deletional mutagenesis: underlying structural factors contributing to nickel activation profiles.
    Suttisansanee U; Ran Y; Mullings KY; Sukdeo N; Honek JF
    Metallomics; 2015 Apr; 7(4):605-12. PubMed ID: 25557363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active monomeric and dimeric forms of Pseudomonas putida glyoxalase I: evidence for 3D domain swapping.
    Saint-Jean AP; Phillips KR; Creighton DJ; Stone MJ
    Biochemistry; 1998 Jul; 37(29):10345-53. PubMed ID: 9671502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of human glyoxalase I--evidence for gene duplication and 3D domain swapping.
    Cameron AD; Olin B; Ridderström M; Mannervik B; Jones TA
    EMBO J; 1997 Jun; 16(12):3386-95. PubMed ID: 9218781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 15N-1H HSQC NMR evidence for distinct specificity of two active sites in Escherichia coli glyoxalase I.
    Su Z; Sukdeo N; Honek JF
    Biochemistry; 2008 Dec; 47(50):13232-41. PubMed ID: 19053281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-affinity Ni2+ binding selectively promotes binding of Helicobacter pylori NikR to its target urease promoter.
    Zambelli B; Danielli A; Romagnoli S; Neyroz P; Ciurli S; Scarlato V
    J Mol Biol; 2008 Nov; 383(5):1129-43. PubMed ID: 18790698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zopolrestat as a human glyoxalase I inhibitor and its structural basis.
    Zhai J; Zhang H; Zhang L; Zhao Y; Chen S; Chen Y; Peng X; Li Q; Yuan M; Hu X
    ChemMedChem; 2013 Sep; 8(9):1462-4. PubMed ID: 23857942
    [No Abstract]   [Full Text] [Related]  

  • 20. Structural variation in bacterial glyoxalase I enzymes: investigation of the metalloenzyme glyoxalase I from Clostridium acetobutylicum.
    Suttisansanee U; Lau K; Lagishetty S; Rao KN; Swaminathan S; Sauder JM; Burley SK; Honek JF
    J Biol Chem; 2011 Nov; 286(44):38367-38374. PubMed ID: 21914803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.