BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1291 related articles for article (PubMed ID: 24647116)

  • 1. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism.
    Hayes JD; Dinkova-Kostova AT
    Trends Biochem Sci; 2014 Apr; 39(4):199-218. PubMed ID: 24647116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial CRISPR-Cas9 Metabolic Screens Reveal Critical Redox Control Points Dependent on the KEAP1-NRF2 Regulatory Axis.
    Zhao D; Badur MG; Luebeck J; Magaña JH; Birmingham A; Sasik R; Ahn CS; Ideker T; Metallo CM; Mali P
    Mol Cell; 2018 Feb; 69(4):699-708.e7. PubMed ID: 29452643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nrf2 for a key member of redox regulation: A novel insight against myocardial ischemia and reperfusion injuries.
    Han X; Wang H; Du F; Zeng X; Guo C
    Biomed Pharmacother; 2023 Dec; 168():115855. PubMed ID: 37939614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting the Crosstalk between NRF2 Signaling and Metabolic Processes in Cancer.
    DeBlasi JM; DeNicola GM
    Cancers (Basel); 2020 Oct; 12(10):. PubMed ID: 33080927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nrf2 activation reprograms macrophage intermediary metabolism and suppresses the type I interferon response.
    Ryan DG; Knatko EV; Casey AM; Hukelmann JL; Dayalan Naidu S; Brenes AJ; Ekkunagul T; Baker C; Higgins M; Tronci L; Nikitopolou E; Honda T; Hartley RC; O'Neill LAJ; Frezza C; Lamond AI; Abramov AY; Arthur JSC; Cantrell DA; Murphy MP; Dinkova-Kostova AT
    iScience; 2022 Feb; 25(2):103827. PubMed ID: 35198887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the NRF2 confusion: Distinguishing nuclear respiratory factor 2 from nuclear erythroid factor 2.
    George M; Reddy AP; Reddy PH; Kshirsagar S
    Ageing Res Rev; 2024 Jul; 98():102353. PubMed ID: 38815934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SLAM-ITseq identifies that Nrf2 induces liver regeneration through the pentose phosphate pathway.
    Tan VWT; Salmi TM; Karamalakis AP; Gillespie A; Ong AJS; Balic JJ; Chan YC; Bladen CE; Brown KK; Dawson MA; Cox AG
    Dev Cell; 2024 Apr; 59(7):898-910.e6. PubMed ID: 38366599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The multifaceted role of Nrf2 in mitochondrial function.
    Holmström KM; Kostov RV; Dinkova-Kostova AT
    Curr Opin Toxicol; 2016 Dec; 1():80-91. PubMed ID: 28066829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox toxicology of environmental chemicals causing oxidative stress.
    Zheng F; Gonçalves FM; Abiko Y; Li H; Kumagai Y; Aschner M
    Redox Biol; 2020 Jul; 34():101475. PubMed ID: 32336668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NRF2-ome: an integrated web resource to discover protein interaction and regulatory networks of NRF2.
    Türei D; Papp D; Fazekas D; Földvári-Nagy L; Módos D; Lenti K; Csermely P; Korcsmáros T
    Oxid Med Cell Longev; 2013; 2013():737591. PubMed ID: 23710289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What is Known Regarding the Participation of Factor Nrf-2 in Liver Regeneration?
    Morales-González JA; Madrigal-Santillán E; Morales-González Á; Bautista M; Gayosso-Islas E; Sánchez-Moreno C
    Cells; 2015 May; 4(2):169-77. PubMed ID: 26010752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease.
    Tebay LE; Robertson H; Durant ST; Vitale SR; Penning TM; Dinkova-Kostova AT; Hayes JD
    Free Radic Biol Med; 2015 Nov; 88(Pt B):108-146. PubMed ID: 26122708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The emerging role of Nrf2 in mitochondrial function.
    Dinkova-Kostova AT; Abramov AY
    Free Radic Biol Med; 2015 Nov; 88(Pt B):179-188. PubMed ID: 25975984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements.
    Itoh K; Chiba T; Takahashi S; Ishii T; Igarashi K; Katoh Y; Oyake T; Hayashi N; Satoh K; Hatayama I; Yamamoto M; Nabeshima Y
    Biochem Biophys Res Commun; 1997 Jul; 236(2):313-22. PubMed ID: 9240432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain.
    Itoh K; Wakabayashi N; Katoh Y; Ishii T; Igarashi K; Engel JD; Yamamoto M
    Genes Dev; 1999 Jan; 13(1):76-86. PubMed ID: 9887101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of β-TrCP and GSK-3.
    Hayes JD; Chowdhry S; Dinkova-Kostova AT; Sutherland C
    Biochem Soc Trans; 2015 Aug; 43(4):611-20. PubMed ID: 26551701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Keap1-Nrf2 system and diabetes mellitus.
    Uruno A; Yagishita Y; Yamamoto M
    Arch Biochem Biophys; 2015 Jan; 566():76-84. PubMed ID: 25528168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of the Keap1-Nrf2 system.
    Suzuki T; Yamamoto M
    Free Radic Biol Med; 2015 Nov; 88(Pt B):93-100. PubMed ID: 26117331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Keap1/Nrf2 pathway in health and disease: from the bench to the clinic.
    O'Connell MA; Hayes JD
    Biochem Soc Trans; 2015 Aug; 43(4):687-9. PubMed ID: 26551713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The complexity of the Nrf2 pathway: beyond the antioxidant response.
    Huang Y; Li W; Su ZY; Kong AN
    J Nutr Biochem; 2015 Dec; 26(12):1401-13. PubMed ID: 26419687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 65.