These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24647197)

  • 1. Modelling clogging and biofilm detachment in sponge carrier media.
    So M; Naka D; Goel R; Terashima M; Yasui H
    Water Sci Technol; 2014; 69(6):1298-303. PubMed ID: 24647197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of biofilm permeability on bio-clogging of porous media.
    Pintelon TR; Picioreanu C; Loosdrecht MC; Johns ML
    Biotechnol Bioeng; 2012 Apr; 109(4):1031-42. PubMed ID: 22095039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A general description of detachment for multidimensional modelling of biofilms.
    Xavier Jde B; Picioreanu C; van Loosdrecht MC
    Biotechnol Bioeng; 2005 Sep; 91(6):651-69. PubMed ID: 15918167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards optimum permeability reduction in porous media using biofilm growth simulations.
    Pintelon TR; Graf von der Schulenburg DA; Johns ML
    Biotechnol Bioeng; 2009 Jul; 103(4):767-79. PubMed ID: 19309753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, Part I: Semi-empirical model development.
    Sen D; Randall CW
    Water Environ Res; 2008 May; 80(5):439-53. PubMed ID: 18605383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional model of biofilm detachment caused by internal stress from liquid flow.
    Picioreanu C; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 2001 Jan; 72(2):205-18. PubMed ID: 11114658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions.
    Zeng M; Soric A; Roche N
    Bioresour Technol; 2013 Sep; 144():202-9. PubMed ID: 23871921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detachment of multi species biofilm in circulating fluidized bed bioreactor.
    Patel A; Nakhla G; Zhu J
    Biotechnol Bioeng; 2005 Nov; 92(4):427-37. PubMed ID: 16028296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biofilm development and the dynamics of preferential flow paths in porous media.
    Bottero S; Storck T; Heimovaara TJ; van Loosdrecht MC; Enzien MV; Picioreanu C
    Biofouling; 2013; 29(9):1069-86. PubMed ID: 24028574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of start-up and operation of anaerobic biofilm reactors: an overview of 15 years of research.
    Escudié R; Cresson R; Delgenès JP; Bernet N
    Water Res; 2011 Jan; 45(1):1-10. PubMed ID: 20713296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detachment of biomass from suspended nongrowing spherical biofilms in airlift reactors.
    Gjaltema A; Tijhuis L; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1995 May; 46(3):258-69. PubMed ID: 18623310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainty in bulk-liquid hydrodynamics and biofilm dynamics creates uncertainties in biofilm reactor design.
    Boltz JP; Daigger GT
    Water Sci Technol; 2010; 61(2):307-16. PubMed ID: 20107256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of operational conditions on biofilm specific activity of an anaerobic fluidized bed reactor.
    García-Morales JL; Romero LI; Sales D
    Water Sci Technol; 2003; 47(5):197-200. PubMed ID: 12701928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abrasion of suspended biofilm pellets in airlift reactors: importance of shape, structure, and particle concentrations.
    Gjaltema A; Vinke JL; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1997 Jan; 53(1):88-99. PubMed ID: 18629963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of biofilm growth, substrate conversion and mass transfer under different hydrodynamic conditions.
    Horn H; Wäsche S; Hempel DC
    Water Sci Technol; 2002; 46(1-2):249-52. PubMed ID: 12216631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilm development in fixed bed biofilm reactors: experiments and simple models for engineering design purposes.
    Szilágyi N; Kovács R; Kenyeres I; Csikor Z
    Water Sci Technol; 2013; 68(6):1391-9. PubMed ID: 24056439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determining the flow regime in a biofilm carrier by means of magnetic resonance imaging.
    Herrling MP; Guthausen G; Wagner M; Lackner S; Horn H
    Biotechnol Bioeng; 2015 May; 112(5):1023-32. PubMed ID: 25425488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of settleability of biologically produced solids and biofilm morphology in moving bed bioreactors (MBBRs).
    Karizmeh MS; Delatolla R; Narbaitz RM
    Bioprocess Biosyst Eng; 2014 Sep; 37(9):1839-48. PubMed ID: 24623463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A framework for multidimensional modelling of activity and structure of multispecies biofilms.
    Xavier JB; Picioreanu C; van Loosdrecht MC
    Environ Microbiol; 2005 Aug; 7(8):1085-103. PubMed ID: 16011747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of Streptomyces griseus biofilms in continuous flow tubular reactors.
    Winn M; Casey E; Habimana O; Murphy CD
    FEMS Microbiol Lett; 2014 Mar; 352(2):157-64. PubMed ID: 24417230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.