These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 24647201)

  • 21. Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water.
    Autixier L; Mailhot A; Bolduc S; Madoux-Humery AS; Galarneau M; Prévost M; Dorner S
    Sci Total Environ; 2014 Nov; 499():238-47. PubMed ID: 25192930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using data from monitoring combined sewer overflows to assess, improve, and maintain combined sewer systems.
    Montserrat A; Bosch L; Kiser MA; Poch M; Corominas L
    Sci Total Environ; 2015 Feb; 505():1053-61. PubMed ID: 25461106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vision-based system for the control and measurement of wastewater flow rate in sewer systems.
    Nguyen LS; Schaeli B; Sage D; Kayal S; Jeanbourquin D; Barry DA; Rossi L
    Water Sci Technol; 2009; 60(9):2281-9. PubMed ID: 19901459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Priority pollutants in urban stormwater: part 2 - case of combined sewers.
    Gasperi J; Zgheib S; Cladière M; Rocher V; Moilleron R; Chebbo G
    Water Res; 2012 Dec; 46(20):6693-703. PubMed ID: 22000716
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toxicity and pollutant impact analysis in an urban river due to combined sewer overflows loads.
    Casadio A; Maglionico M; Bolognesi A; Artina S
    Water Sci Technol; 2010; 61(1):207-15. PubMed ID: 20057107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Not all SuDS are created equal: Impact of different approaches on combined sewer overflows.
    Joshi P; Leitão JP; Maurer M; Bach PM
    Water Res; 2021 Mar; 191():116780. PubMed ID: 33422977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved radar data processing algorithms for quantitative rainfall estimation in real time.
    Krämer S; Verworn HR
    Water Sci Technol; 2009; 60(1):175-84. PubMed ID: 19587415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overland flow computations in urban and industrial catchments from direct precipitation data using a two-dimensional shallow water model.
    Cea L; Garrido M; Puertas J; Jácome A; Del Río H; Suárez J
    Water Sci Technol; 2010; 62(9):1998-2008. PubMed ID: 21045324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance of stormwater detention tanks for urban drainage systems in northern Italy.
    Todeschini S; Papiri S; Ciaponi C
    J Environ Manage; 2012 Jun; 101():33-45. PubMed ID: 22387328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-dimensional modelling of the interactions between heavy rainfall-runoff in an urban area and flooding flows from sewer networks and rivers.
    Kouyi GL; Fraisse D; Rivière N; Guinot V; Chocat B
    Water Sci Technol; 2009; 60(4):927-34. PubMed ID: 19700831
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Local effects of global climate change on the urban drainage system of Hamburg.
    Krieger K; Kuchenbecker A; Hüffmeyer N; Verworn HR
    Water Sci Technol; 2013; 68(5):1107-13. PubMed ID: 24037163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a scenario-based stormwater management planning support system for reducing combined sewer overflows (CSOs).
    Fu X; Goddard H; Wang X; Hopton ME
    J Environ Manage; 2019 Apr; 236():571-580. PubMed ID: 30771676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Acoustic Sensor for Combined Sewer Overflow (CSO) Screen Condition Monitoring in a Drainage Infrastructure.
    See CH; Horoshenkov KV; Ali MTB; Tait SJ
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regression modeling of combined sewer overflows to assess system performance.
    A Bizer M; Kirchhoff CJ
    Water Sci Technol; 2022 Dec; 86(11):2848-2860. PubMed ID: 36515193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Runoff modelling using radar data and flow measurements in a stochastic state space approach.
    Krämer S; Grum M; Verworn HR; Redder A
    Water Sci Technol; 2005; 52(5):1-8. PubMed ID: 16248174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of runoff from various urban catchments at different spatial scales in Beijing, China.
    Zhang W; Che W; Liu DK; Gan YP; Lv FF
    Water Sci Technol; 2012; 66(1):21-7. PubMed ID: 22678196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time model predictive and rule-based control with green infrastructures to reduce combined sewer overflows.
    Jean MÈ; Morin C; Duchesne S; Pelletier G; Pleau M
    Water Res; 2022 Aug; 221():118753. PubMed ID: 35749924
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A spatial-temporal rainfall generator for urban drainage design.
    McRobie FH; Wang LP; Onof C; Kenney S
    Water Sci Technol; 2013; 68(1):240-9. PubMed ID: 23823561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Radar based rainfall forecast for sewage systems control.
    Aspegren H; Bailly C; Mpé A; Bazzurro N; Morgavi A; Prem E; Jensen NE
    Water Sci Technol; 2001; 43(5):79-86. PubMed ID: 11379159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of pollutant load emission from combined sewer overflows based on the online monitoring.
    Brzezińska A; Zawilski M; Sakson G
    Environ Monit Assess; 2016 Sep; 188(9):502. PubMed ID: 27488195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.