BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24647442)

  • 1. Soaring migratory birds avoid wind farm in the Isthmus of Tehuantepec, southern Mexico.
    Villegas-Patraca R; Cabrera-Cruz SA; Herrera-Alsina L
    PLoS One; 2014; 9(3):e92462. PubMed ID: 24647442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wind turbines cause functional habitat loss for migratory soaring birds.
    Marques AT; Santos CD; Hanssen F; Muñoz AR; Onrubia A; Wikelski M; Moreira F; Palmeirim JM; Silva JP
    J Anim Ecol; 2020 Jan; 89(1):93-103. PubMed ID: 30762229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterns of migrating soaring migrants indicate attraction to marine wind farms.
    Skov H; Desholm M; Heinänen S; Kahlert JA; Laubek B; Jensen NE; Žydelis R; Jensen BP
    Biol Lett; 2016 Dec; 12(12):. PubMed ID: 28003522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Migration by soaring or flapping: numerical atmospheric simulations reveal that turbulence kinetic energy dictates bee-eater flight mode.
    Sapir N; Horvitz N; Wikelski M; Avissar R; Mahrer Y; Nathan R
    Proc Biol Sci; 2011 Nov; 278(1723):3380-6. PubMed ID: 21471116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating updraft velocity components over large spatial scales: contrasting migration strategies of golden eagles and turkey vultures.
    Bohrer G; Brandes D; Mandel JT; Bildstein KL; Miller TA; Lanzone M; Katzner T; Maisonneuve C; Tremblay JA
    Ecol Lett; 2012 Feb; 15(2):96-103. PubMed ID: 22077120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the feasibility of the Rayleigh cycle for dynamic soaring trajectories.
    Alexandre D; Marino L; Marta A; Graziani G; Piva R
    PLoS One; 2020; 15(3):e0229746. PubMed ID: 32126133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing an emerging paradigm in migration ecology shows surprising differences in efficiency between flight modes.
    Duerr AE; Miller TA; Lanzone M; Brandes D; Cooper J; O'Malley K; Maisonneuve C; Tremblay J; Katzner T
    PLoS One; 2012; 7(4):e35548. PubMed ID: 22558166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flight modes in migrating European bee-eaters: heart rate may indicate low metabolic rate during soaring and gliding.
    Sapir N; Wikelski M; McCue MD; Pinshow B; Nathan R
    PLoS One; 2010 Nov; 5(11):e13956. PubMed ID: 21085655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Migrating birds avoid flying through fog and low clouds.
    Panuccio M; Dell'Omo G; Bogliani G; Catoni C; Sapir N
    Int J Biometeorol; 2019 Feb; 63(2):231-239. PubMed ID: 30687905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex behaviour in complex terrain - Modelling bird migration in a high resolution wind field across mountainous terrain to simulate observed patterns.
    Aurbach A; Schmid B; Liechti F; Chokani N; Abhari R
    J Theor Biol; 2018 Oct; 454():126-138. PubMed ID: 29874554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing wind turbine avoidance behaviour of a migrating soaring bird.
    Santos CD; Ramesh H; Ferraz R; Franco AMA; Wikelski M
    Sci Rep; 2022 Apr; 12(1):6441. PubMed ID: 35440704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental verification of dynamic soaring in albatrosses.
    Sachs G; Traugott J; Nesterova AP; Bonadonna F
    J Exp Biol; 2013 Nov; 216(Pt 22):4222-32. PubMed ID: 24172888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Where in the air? Aerial habitat use of nocturnally migrating birds.
    Horton KG; Van Doren BM; Stepanian PM; Farnsworth A; Kelly JF
    Biol Lett; 2016 Nov; 12(11):. PubMed ID: 27881761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird.
    Gibb R; Shoji A; Fayet AL; Perrins CM; Guilford T; Freeman R
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28701505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-inspired energy-harvesting mechanisms and patterns of dynamic soaring.
    Liu DN; Hou ZX; Guo Z; Yang XX; Gao XZ
    Bioinspir Biomim; 2017 Jan; 12(1):016014. PubMed ID: 27991431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal effects of wind conditions on migration patterns of soaring American white pelican.
    Gutierrez Illan J; Wang G; Cunningham FL; King DT
    PLoS One; 2017; 12(10):e0186948. PubMed ID: 29065188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flight mode affects allometry of migration range in birds.
    Watanabe YY
    Ecol Lett; 2016 Aug; 19(8):907-14. PubMed ID: 27305867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures.
    de Lucas M; Ferrer M; Janss GF
    PLoS One; 2012; 7(11):e48092. PubMed ID: 23152764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Barriers to movement: Modelling energetic costs of avoiding marine wind farms amongst breeding seabirds.
    Masden EA; Haydon DT; Fox AD; Furness RW
    Mar Pollut Bull; 2010 Jul; 60(7):1085-91. PubMed ID: 20188382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The respiratory system influences flight mechanics in soaring birds.
    Schachner ER; Moore AJ; Martinez A; Diaz RE; Echols MS; Atterholt J; W P Kissane R; Hedrick BP; Bates KT
    Nature; 2024 Jun; 630(8017):671-676. PubMed ID: 38867039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.