These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 24647536)

  • 1. Stochastic atomistic simulation of polycyclic aromatic hydrocarbon growth in combustion.
    Lai JY; Elvati P; Violi A
    Phys Chem Chem Phys; 2014 May; 16(17):7969-79. PubMed ID: 24647536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation mechanism of polycyclic aromatic hydrocarbons in benzene combustion: Quantum chemical molecular dynamics simulations.
    Saha B; Irle S; Morokuma K
    J Chem Phys; 2010 Jun; 132(22):224303. PubMed ID: 20550393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of PAH and soot precursors in benzene flames by addition of ethanol.
    Golea D; Rezgui Y; Guemini M; Hamdane S
    J Phys Chem A; 2012 Apr; 116(14):3625-42. PubMed ID: 22429107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation.
    Kholghy MR; Kelesidis GA; Pratsinis SE
    Phys Chem Chem Phys; 2018 Apr; 20(16):10926-10938. PubMed ID: 29542752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent applications of synchrotron VUV photoionization mass spectrometry: insight into combustion chemistry.
    Li Y; Qi F
    Acc Chem Res; 2010 Jan; 43(1):68-78. PubMed ID: 19705821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influences of the molecular fuel structure on combustion reactions towards soot precursors in selected alkane and alkene flames.
    Ruwe L; Moshammer K; Hansen N; Kohse-Höinghaus K
    Phys Chem Chem Phys; 2018 Apr; 20(16):10780-10795. PubMed ID: 29392266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the role of resonantly stabilized radicals in polycyclic aromatic hydrocarbon (PAH) formation: pyrene and fluoranthene formation from benzyl-indenyl addition.
    Sinha S; Rahman RK; Raj A
    Phys Chem Chem Phys; 2017 Jul; 19(29):19262-19278. PubMed ID: 28702614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PAH growth initiated by propargyl addition: mechanism development and computational kinetics.
    Raj A; Al Rashidi MJ; Chung SH; Sarathy SM
    J Phys Chem A; 2014 Apr; 118(16):2865-85. PubMed ID: 24650362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of the benzyl + O(3P) reaction: a quantum chemical/statistical reaction rate theory study.
    da Silva G; Bozzelli JW
    Phys Chem Chem Phys; 2012 Dec; 14(46):16143-54. PubMed ID: 23108328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polycyclic aromatic hydrocarbon formation mechanism in the "particle phase". A theoretical study.
    Indarto A; Giordana A; Ghigo G; Maranzana A; Tonachini G
    Phys Chem Chem Phys; 2010 Aug; 12(32):9429-40. PubMed ID: 20589277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized combustion of biomass volatiles by varying O2 and CO2 levels: a numerical simulation using a highly detailed soot formation reaction mechanism.
    Wijayanta AT; Saiful Alam M; Nakaso K; Fukai J; Shimizu M
    Bioresour Technol; 2012 Apr; 110():645-51. PubMed ID: 22334001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous Butadiyne Addition to Propargyl: A Radical-Efficient Pathway for Polycyclic Aromatic Hydrocarbons.
    Jin H; Xing L; Yang J; Zhou Z; Qi F; Farooq A
    J Phys Chem Lett; 2021 Aug; 12(33):8109-8114. PubMed ID: 34410145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective Formation of Indene through the Reaction of Benzyl Radicals with Acetylene.
    Parker DS; Kaiser RI; Kostko O; Ahmed M
    Chemphyschem; 2015 Jul; 16(10):2091-3. PubMed ID: 25917234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combustion-generated nanoparticles produced in a benzene flame: a multiscale approach.
    Violi A; Venkatnathan A
    J Chem Phys; 2006 Aug; 125(5):054302. PubMed ID: 16942208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of phenyl radicals in the growth of polycyclic aromatic hydrocarbons.
    Shukla B; Susa A; Miyoshi A; Koshi M
    J Phys Chem A; 2008 Mar; 112(11):2362-9. PubMed ID: 18298104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polycyclic aromatic hydrocarbon (PAH) formation from benzyl radicals: a reaction kinetics study.
    Sinha S; Raj A
    Phys Chem Chem Phys; 2016 Mar; 18(11):8120-31. PubMed ID: 26923612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward the Oxidation of the Phenyl Radical and Prevention of PAH Formation in Combustion Systems.
    Parker DS; Kaiser RI; Troy TP; Kostko O; Ahmed M; Mebel AM
    J Phys Chem A; 2015 Jul; 119(28):7145-54. PubMed ID: 25354358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemistry of molecular growth processes in flames.
    Smyth KC; Miller JH
    Science; 1987 Jun; 236(4808):1540-6. PubMed ID: 17835737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mass growth through ring expansion in polycyclic aromatic hydrocarbons via radical-radical reactions.
    Zhao L; Kaiser RI; Lu W; Xu B; Ahmed M; Morozov AN; Mebel AM; Howlader AH; Wnuk SF
    Nat Commun; 2019 Aug; 10(1):3689. PubMed ID: 31417088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Aliphatically Bridged Multi-Core Polycyclic Aromatic Hydrocarbons in Sooting Flames with Atmospheric-Sampling High-Resolution Tandem Mass Spectrometry.
    Adamson BD; Skeen SA; Ahmed M; Hansen N
    J Phys Chem A; 2018 Dec; 122(48):9338-9349. PubMed ID: 30415549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.