These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Assessing the continuum of event-based biosurveillance through an operational lens. Corley CD; Lancaster MJ; Brigantic RT; Chung JS; Walters RA; Arthur RR; Bruckner-Lea CJ; Calapristi A; Dowling G; Hartley DM; Kennedy S; Kircher A; Klucking S; Lee EK; McKenzie T; Nelson NP; Olsen J; Pancerella C; Quitugua TN; Reed JT; Thomas CS Biosecur Bioterror; 2012 Mar; 10(1):131-41. PubMed ID: 22320664 [TBL] [Abstract][Full Text] [Related]
3. Beyond the black stump: rapid reviews of health research issues affecting regional, rural and remote Australia. Osborne SR; Alston LV; Bolton KA; Whelan J; Reeve E; Wong Shee A; Browne J; Walker T; Versace VL; Allender S; Nichols M; Backholer K; Goodwin N; Lewis S; Dalton H; Prael G; Curtin M; Brooks R; Verdon S; Crockett J; Hodgins G; Walsh S; Lyle DM; Thompson SC; Browne LJ; Knight S; Pit SW; Jones M; Gillam MH; Leach MJ; Gonzalez-Chica DA; Muyambi K; Eshetie T; Tran K; May E; Lieschke G; Parker V; Smith A; Hayes C; Dunlop AJ; Rajappa H; White R; Oakley P; Holliday S Med J Aust; 2020 Dec; 213 Suppl 11():S3-S32.e1. PubMed ID: 33314144 [TBL] [Abstract][Full Text] [Related]
4. The future of Cochrane Neonatal. Soll RF; Ovelman C; McGuire W Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834 [TBL] [Abstract][Full Text] [Related]
5. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States. Paciorek CJ; Liu Y; Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153 [TBL] [Abstract][Full Text] [Related]
6. TECH-VER: A Verification Checklist to Reduce Errors in Models and Improve Their Credibility. Büyükkaramikli NC; Rutten-van Mölken MPMH; Severens JL; Al M Pharmacoeconomics; 2019 Nov; 37(11):1391-1408. PubMed ID: 31705406 [TBL] [Abstract][Full Text] [Related]
7. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
8. Avoiding and identifying errors in health technology assessment models: qualitative study and methodological review. Chilcott J; Tappenden P; Rawdin A; Johnson M; Kaltenthaler E; Paisley S; Papaioannou D; Shippam A Health Technol Assess; 2010 May; 14(25):iii-iv, ix-xii, 1-107. PubMed ID: 20501062 [TBL] [Abstract][Full Text] [Related]
9. Next Generation Public Health Emergency Readiness: Standardized Tools and a Threat Agnostic Biosurveillance System. Rubin E; Harvey C; Villatoro A; Dean B Health Secur; 2024; 22(2):140-145. PubMed ID: 38512475 [No Abstract] [Full Text] [Related]
10. Digital disease detection: A systematic review of event-based internet biosurveillance systems. O'Shea J Int J Med Inform; 2017 May; 101():15-22. PubMed ID: 28347443 [TBL] [Abstract][Full Text] [Related]
11. Advancing a framework to enable characterization and evaluation of data streams useful for biosurveillance. Margevicius KJ; Generous N; Taylor-McCabe KJ; Brown M; Daniel WB; Castro L; Hengartner A; Deshpande A PLoS One; 2014; 9(1):e83730. PubMed ID: 24392093 [TBL] [Abstract][Full Text] [Related]
12. A review of evaluations of electronic event-based biosurveillance systems. Gajewski KN; Peterson AE; Chitale RA; Pavlin JA; Russell KL; Chretien JP PLoS One; 2014; 9(10):e111222. PubMed ID: 25329886 [TBL] [Abstract][Full Text] [Related]
13. Proceedings for the 5th Asia-Pacific Conference on Disaster Medicine: creating an agenda for action. De Grace M; Ericson D; Folz H; Greene W; Ho K; Pearce L Prehosp Disaster Med; 2001; 16(1):18-21. PubMed ID: 11367932 [TBL] [Abstract][Full Text] [Related]
14. The clinical effectiveness and cost-effectiveness of technologies used to visualise the seizure focus in people with refractory epilepsy being considered for surgery: a systematic review and decision-analytical model. Burch J; Hinde S; Palmer S; Beyer F; Minton J; Marson A; Wieshmann U; Woolacott N; Soares M Health Technol Assess; 2012; 16(34):1-157, iii-iv. PubMed ID: 22985954 [TBL] [Abstract][Full Text] [Related]
15. Creating a process for incorporating epidemiological modelling into outbreak management decisions. Akselrod H; Mercon M; Kirkeby Risoe P; Schlegelmilch J; McGovern J; Bogucki S J Bus Contin Emer Plan; 2012; 6(1):68-83. PubMed ID: 22948107 [TBL] [Abstract][Full Text] [Related]
16. Review of guidelines for good practice in decision-analytic modelling in health technology assessment. Philips Z; Ginnelly L; Sculpher M; Claxton K; Golder S; Riemsma R; Woolacoot N; Glanville J Health Technol Assess; 2004 Sep; 8(36):iii-iv, ix-xi, 1-158. PubMed ID: 15361314 [TBL] [Abstract][Full Text] [Related]
17. Biosurveillance where it happens: state and local capabilities and needs. Toner ES; Nuzzo JB; Watson M; Franco C; Sell TK; Cicero A; Inglesby TV Biosecur Bioterror; 2011 Dec; 9(4):321-30. PubMed ID: 21905878 [TBL] [Abstract][Full Text] [Related]
18. [Progress in construction and verification of colorectal cancer risk prediction models: a systematic review]. Guo LW; Li N; Chen HD; Lyu ZY; Feng XS; Wei LP; Li X; Wen Y; Lu M; Dai M Zhonghua Yu Fang Yi Xue Za Zhi; 2019 Jun; 53(6):603-610. PubMed ID: 31177758 [No Abstract] [Full Text] [Related]
19. Influenza forecasting in human populations: a scoping review. Chretien JP; George D; Shaman J; Chitale RA; McKenzie FE PLoS One; 2014; 9(4):e94130. PubMed ID: 24714027 [TBL] [Abstract][Full Text] [Related]
20. Selecting essential information for biosurveillance--a multi-criteria decision analysis. Generous N; Margevicius KJ; Taylor-McCabe KJ; Brown M; Daniel WB; Castro L; Hengartner A; Deshpande A PLoS One; 2014; 9(1):e86601. PubMed ID: 24489748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]