BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24647578)

  • 1. The prediction of candidate genes for cervix related cancer through gene ontology and graph theoretical approach.
    Hindumathi V; Kranthi T; Rao SB; Manimaran P
    Mol Biosyst; 2014 Jun; 10(6):1450-60. PubMed ID: 24647578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A graph centrality-based approach for candidate gene prediction for type 1 diabetes.
    Thummadi NB; Vishnu E; Subbiah EV; Manimaran P
    Immunol Res; 2021 Oct; 69(5):422-428. PubMed ID: 34297307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conceptual thinking for in silico prioritization of candidate disease genes.
    Tiffin N
    Methods Mol Biol; 2011; 760():175-87. PubMed ID: 21779997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global risk transformative prioritization for prostate cancer candidate genes in molecular networks.
    Chen L; Tai J; Zhang L; Shang Y; Li X; Qu X; Li W; Miao Z; Jia X; Wang H; Li W; He W
    Mol Biosyst; 2011 Sep; 7(9):2547-53. PubMed ID: 21735017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel candidate disease genes prioritization method based on module partition and rank fusion.
    Chen X; Yan GY; Liao XP
    OMICS; 2010 Aug; 14(4):337-56. PubMed ID: 20726795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital candidate gene approach (DigiCGA) for identification of cancer genes.
    Zhu MJ; Li X; Zhao SH
    Methods Mol Biol; 2010; 653():105-29. PubMed ID: 20721740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Syndrome to gene (S2G): in-silico identification of candidate genes for human diseases.
    Gefen A; Cohen R; Birk OS
    Hum Mutat; 2010 Mar; 31(3):229-36. PubMed ID: 20052752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrative literature and data mining to rank disease candidate genes.
    Wu C; Zhu C; Jegga AG
    Methods Mol Biol; 2014; 1159():207-26. PubMed ID: 24788269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semantic interrogation of a multi knowledge domain ontological model of tendinopathy identifies four strong candidate risk genes.
    Saunders CJ; Jalali Sefid Dashti M; Gamieldien J
    Sci Rep; 2016 Jan; 6():19820. PubMed ID: 26804977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative systems biology approaches to identify and prioritize disease and drug candidate genes.
    Kaimal V; Sardana D; Bardes EE; Gudivada RC; Chen J; Jegga AG
    Methods Mol Biol; 2011; 700():241-59. PubMed ID: 21204038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A prioritization analysis of disease association by data-mining of functional annotation of human genes.
    Taniya T; Tanaka S; Yamaguchi-Kabata Y; Hanaoka H; Yamasaki C; Maekawa H; Barrero RA; Lenhard B; Datta MW; Shimoyama M; Bumgarner R; Chakraborty R; Hopkinson I; Jia L; Hide W; Auffray C; Minoshima S; Imanishi T; Gojobori T
    Genomics; 2012 Jan; 99(1):1-9. PubMed ID: 22019378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speeding disease gene discovery by sequence based candidate prioritization.
    Adie EA; Adams RR; Evans KL; Porteous DJ; Pickard BS
    BMC Bioinformatics; 2005 Mar; 6():55. PubMed ID: 15766383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Candidate gene discovery and prioritization in rare diseases.
    Jegga AG
    Methods Mol Biol; 2014; 1168():295-312. PubMed ID: 24870143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New approaches to pathogenic gene function discovery with human squamous cell cervical carcinoma by gene ontology.
    Seo MJ; Bae SM; Kim YW; Kim YW; Hur SY; Ro DY; Lee JM; Namkoong SE; Kim CK; Ahn WS
    Gynecol Oncol; 2005 Mar; 96(3):621-9. PubMed ID: 15721403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the transcriptional regulation of cervix cancer using microarray gene expression data and promoter sequence analysis of a curated gene set.
    Srivastava P; Mangal M; Agarwal SM
    Gene; 2014 Feb; 535(2):233-8. PubMed ID: 24291025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting disease-related genes using integrated biomedical networks.
    Peng J; Bai K; Shang X; Wang G; Xue H; Jin S; Cheng L; Wang Y; Chen J
    BMC Genomics; 2017 Jan; 18(Suppl 1):1043. PubMed ID: 28198675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational framework for the prioritization of disease-gene candidates.
    Browne F; Wang H; Zheng H
    BMC Genomics; 2015; 16 Suppl 9(Suppl 9):S2. PubMed ID: 26330267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mining for novel tumor suppressor genes using a shortest path approach.
    Chen L; Yang J; Huang T; Kong X; Lu L; Cai YD
    J Biomol Struct Dyn; 2016; 34(3):664-75. PubMed ID: 26209080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HybridRanker: Integrating network topology and biomedical knowledge to prioritize cancer candidate genes.
    Razaghi-Moghadam Z; Abdollahi R; Goliaei S; Ebrahimi M
    J Biomed Inform; 2016 Dec; 64():139-146. PubMed ID: 27725293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.