BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24647578)

  • 21. GPEC: a Cytoscape plug-in for random walk-based gene prioritization and biomedical evidence collection.
    Le DH; Kwon YK
    Comput Biol Chem; 2012 Apr; 37():17-23. PubMed ID: 22430954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomine: predicting links between biological entities using network models of heterogeneous databases.
    Eronen L; Toivonen H
    BMC Bioinformatics; 2012 Jun; 13():119. PubMed ID: 22672646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GOrevenge: a novel generic reverse engineering method for the identification of critical molecular players, through the use of ontologies.
    Moutselos K; Maglogiannis I; Chatziioannou A
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3522-7. PubMed ID: 21846603
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uncovering biomarker genes with enriched classification potential from Hallmark gene sets.
    Targonski CA; Shearer CA; Shealy BT; Smith MC; Feltus FA
    Sci Rep; 2019 Jul; 9(1):9747. PubMed ID: 31278367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Candidate gene identification for systemic lupus erythematosus using network centrality measures and gene ontology.
    Siddani BR; Pochineni LP; Palanisamy M
    PLoS One; 2013; 8(12):e81766. PubMed ID: 24312583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. General approach to identifying potential targets for cancer imaging by integrated bioinformatics analysis of publicly available genomic profiles.
    Yang Y; Adelstein SJ; Kassis AI
    Mol Imaging; 2011 Apr; 10(2):123-34. PubMed ID: 21439257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of drug gene associations via ontological profile similarity with application to drug repositioning.
    Kissa M; Tsatsaronis G; Schroeder M
    Methods; 2015 Mar; 74():71-82. PubMed ID: 25498216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent approaches to the prioritization of candidate disease genes.
    Doncheva NT; Kacprowski T; Albrecht M
    Wiley Interdiscip Rev Syst Biol Med; 2012; 4(5):429-42. PubMed ID: 22689539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Web tools for the prioritization of candidate disease genes.
    Oti M; Ballouz S; Wouters MA
    Methods Mol Biol; 2011; 760():189-206. PubMed ID: 21779998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of synthetic lethal pairs in biological systems through network information centrality.
    Kranthi T; Rao SB; Manimaran P
    Mol Biosyst; 2013 Aug; 9(8):2163-7. PubMed ID: 23728082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene prioritization through genomic data fusion.
    Aerts S; Lambrechts D; Maity S; Van Loo P; Coessens B; De Smet F; Tranchevent LC; De Moor B; Marynen P; Hassan B; Carmeliet P; Moreau Y
    Nat Biotechnol; 2006 May; 24(5):537-44. PubMed ID: 16680138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Screening of genes related with intervertebral disc disease by dynamic differential interaction network analysis.
    Jiang K; Li Y; Cao GY; Liu D; Liao DF; Gong K; Xie QY; Ma ZH; Pan XM
    Eur Rev Med Pharmacol Sci; 2013 Dec; 17(23):3186-91. PubMed ID: 24338460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Druggability of human disease genes.
    Sakharkar MK; Sakharkar KR; Pervaiz S
    Int J Biochem Cell Biol; 2007; 39(6):1156-64. PubMed ID: 17446117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ontology-based prediction of cancer driver genes.
    Althubaiti S; Karwath A; Dallol A; Noor A; Alkhayyat SS; Alwassia R; Mineta K; Gojobori T; Beggs AD; Schofield PN; Gkoutos GV; Hoehndorf R
    Sci Rep; 2019 Nov; 9(1):17405. PubMed ID: 31757986
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Update of the G2D tool for prioritization of gene candidates to inherited diseases.
    Perez-Iratxeta C; Bork P; Andrade-Navarro MA
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W212-6. PubMed ID: 17478516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of protein sequence and interaction data for candidate disease gene prediction.
    George RA; Liu JY; Feng LL; Bryson-Richardson RJ; Fatkin D; Wouters MA
    Nucleic Acids Res; 2006; 34(19):e130. PubMed ID: 17020920
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Candidate gene prioritization.
    Masoudi-Nejad A; Meshkin A; Haji-Eghrari B; Bidkhori G
    Mol Genet Genomics; 2012 Sep; 287(9):679-98. PubMed ID: 22893106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prioritizing the candidate genes related to cervical cancer using the moment of inertia tensor.
    Thummadi NB; T M; Vindal V; P M
    Proteins; 2022 Feb; 90(2):363-371. PubMed ID: 34468998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. POCUS: mining genomic sequence annotation to predict disease genes.
    Turner FS; Clutterbuck DR; Semple CA
    Genome Biol; 2003; 4(11):R75. PubMed ID: 14611661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.