These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24647594)

  • 1. Kinetics of micellisation and relaxation of cylindrical micelles described by the difference Becker-Döring equation.
    Babintsev IA; Adzhemyan LTs; Shchekin AK
    Soft Matter; 2014 Apr; 10(15):2619-31. PubMed ID: 24647594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micellization and relaxation in solution with spherical micelles via the discrete Becker-Döring equations at different total surfactant concentrations.
    Babintsev I; Adzhemyan L; Shchekin A
    J Chem Phys; 2012 Jul; 137(4):044902. PubMed ID: 22852650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-scale times and modes of fast and slow relaxation in solutions with coexisting spherical and cylindrical micelles according to the difference Becker-Döring kinetic equations.
    Babintsev IA; Adzhemyan LTs; Shchekin AK
    J Chem Phys; 2014 Aug; 141(6):064901. PubMed ID: 25134593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full-time kinetics of self-assembly and disassembly in micellar solution via the generalized Smoluchowski equation with fusion and fission of surfactant aggregates.
    Shchekin AK; Babintsev IA; Adzhemyan LT
    J Chem Phys; 2016 Nov; 145(17):174105. PubMed ID: 27825237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boltzmann distributions and slow relaxation in systems with spherical and cylindrical micelles.
    Kuni FM; Shchekin AK; Rusanov AI; Grinin AP
    Langmuir; 2006 Feb; 22(4):1534-43. PubMed ID: 16460071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass transport in micellar surfactant solutions: 1. Relaxation of micelle concentration, aggregation number and polydispersity.
    Danov KD; Kralchevsky PA; Denkov ND; Ananthapadmanabhan KP; Lips A
    Adv Colloid Interface Sci; 2006 Jan; 119(1):1-16. PubMed ID: 16303116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxation times and modes of disturbed aggregate distribution in micellar solutions with fusion and fission of micelles.
    Zakharov AI; Adzhemyan LTs; Shchekin AK
    J Chem Phys; 2015 Sep; 143(12):124902. PubMed ID: 26429036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the predictions and limitations of the Becker-Döring model for reaction kinetics in micellar surfactant solutions.
    Griffiths IM; Bain CD; Breward CJ; Colegate DM; Howell PD; Waters SL
    J Colloid Interface Sci; 2011 Aug; 360(2):662-71. PubMed ID: 21571292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of micellar kinetics in relation to technological processes.
    Patist A; Kanicky JR; Shukla PK; Shah DO
    J Colloid Interface Sci; 2002 Jan; 245(1):1-15. PubMed ID: 16290329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear kinetics of fast relaxation in solutions with short and lengthy micelles.
    Kshevetskiy MS; Shchekin AK
    J Chem Phys; 2009 Aug; 131(7):074114. PubMed ID: 19708739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiscale model for kinetics of formation and disintegration of spherical micelles.
    Mohan G; Kopelevich DI
    J Chem Phys; 2008 Jan; 128(4):044905. PubMed ID: 18247998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular thermodynamics for micellar branching in solutions of ionic surfactants.
    Andreev VA; Victorov AI
    Langmuir; 2006 Sep; 22(20):8298-310. PubMed ID: 16981741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass transport in micellar surfactant solutions: 2. Theoretical modeling of adsorption at a quiescent interface.
    Danov KD; Kralchevsky PA; Denkov ND; Ananthapadmanabhan KP; Lips A
    Adv Colloid Interface Sci; 2006 Jan; 119(1):17-33. PubMed ID: 16309620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of nonionic surfactants on cellulose surfaces: adsorbed amounts and kinetics.
    Torn LH; Koopal LK; de Keizer A; Lyklema J
    Langmuir; 2005 Aug; 21(17):7768-75. PubMed ID: 16089382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation work at polydisperse micellization: ideal solution and "dressed micelle" models comparing to molecular dynamics simulations.
    Burov SV; Shchekin AK
    J Chem Phys; 2010 Dec; 133(24):244109. PubMed ID: 21197978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three eras of micellization.
    Neu JC; Cañizo JA; Bonilla LL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061406. PubMed ID: 12513284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micelle-monomer equilibria in solutions of ionic surfactants and in ionic-nonionic mixtures: a generalized phase separation model.
    Danov KD; Kralchevsky PA; Ananthapadmanabhan KP
    Adv Colloid Interface Sci; 2014 Apr; 206():17-45. PubMed ID: 23558017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competition between aggregation and hydrolysis in the reaction of arylperfluorooctanoates in micellar solutions.
    Fernandez MA; de Rossi RH
    Langmuir; 2006 Jul; 22(15):6523-30. PubMed ID: 16830993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of micelle formation and concentration fluctuations in solutions of short-chain surfactants.
    Kaatze U
    J Phys Chem B; 2011 Sep; 115(35):10470-7. PubMed ID: 21766842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic micellar solutions in nonionic fluorinated surfactant systems.
    Acharya DP; Sharma SC; Rodriguez-Abreu C; Aramaki K
    J Phys Chem B; 2006 Oct; 110(41):20224-34. PubMed ID: 17034200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.