These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24647751)

  • 1. Electrohydrodynamic removal of non-specific colloidal adsorption at electrode interfaces.
    Rauf S; Shiddiky MJ; Trau M
    Chem Commun (Camb); 2014 May; 50(37):4813-5. PubMed ID: 24647751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing.
    Vaidyanathan R; Naghibosadat M; Rauf S; Korbie D; Carrascosa LG; Shiddiky MJ; Trau M
    Anal Chem; 2014 Nov; 86(22):11125-32. PubMed ID: 25324037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternating current electrohydrodynamics induced nanoshearing and fluid micromixing for specific capture of cancer cells.
    Vaidyanathan R; Rauf S; Dray E; Shiddiky MJ; Trau M
    Chemistry; 2014 Mar; 20(13):3724-9. PubMed ID: 24677444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable "nano-shearing": a physical mechanism to displace nonspecific cell adhesion during rare cell detection.
    Vaidyanathan R; Shiddiky MJ; Rauf S; Dray E; Tay Z; Trau M
    Anal Chem; 2014 Feb; 86(4):2042-9. PubMed ID: 24446838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuneable surface shear forces to physically displace nonspecific molecules in protein biomarker detection.
    Vaidyanathan R; Rauf S; Shiddiky MJ; Trau M
    Biosens Bioelectron; 2014 Nov; 61():184-91. PubMed ID: 24880656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing Protein Capture Using a Combination of Nanoyeast Single-Chain Fragment Affinity Reagents and Alternating Current Electrohydrodynamic Forces.
    Vaidyanathan R; Rauf S; Grewal YS; Spadafora LJ; Shiddiky MJ; Cangelosi GA; Trau M
    Anal Chem; 2015 Dec; 87(23):11673-81. PubMed ID: 26551436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hexatic-to-disorder transition in colloidal crystals near electrodes: rapid annealing of polycrystalline domains.
    Dutcher CS; Woehl TJ; Talken NH; Ristenpart WD
    Phys Rev Lett; 2013 Sep; 111(12):128302. PubMed ID: 24093305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrokinetic concentration and patterning of colloids with a scanning laser.
    Velasco V; Work AH; Williams SJ
    Electrophoresis; 2012 Jul; 33(13):1931-7. PubMed ID: 22806457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adhesion forces between functionalized latex microspheres and protein-coated surfaces evaluated using colloid probe atomic force microscopy.
    Xu LC; Logan BE
    Colloids Surf B Biointerfaces; 2006 Mar; 48(1):84-94. PubMed ID: 16500091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed motion of colloidal particles in a galvanic microreactor.
    Jan L; Punckt C; Khusid B; Aksay IA
    Langmuir; 2013 Feb; 29(8):2498-505. PubMed ID: 23316685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detachment of colloids from a solid surface by a moving air-water interface.
    Sharma P; Flury M; Zhou J
    J Colloid Interface Sci; 2008 Oct; 326(1):143-50. PubMed ID: 18684467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrohydrodynamic flow and colloidal patterning near inhomogeneities on electrodes.
    Ristenpart WD; Jiang P; Slowik MA; Punckt C; Saville DA; Aksay IA
    Langmuir; 2008 Nov; 24(21):12172-80. PubMed ID: 18828610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical behavior of Au colloidal electrode through layer-by-layer self-assembly.
    Lu M; Li XH; Yu BZ; Li HL
    J Colloid Interface Sci; 2002 Apr; 248(2):376-82. PubMed ID: 16290541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct measurement of colloidal particle rotation and field dependence in alternating current electrohydrodynamic flows.
    Santana-Solano J; Wu DT; Marr DW
    Langmuir; 2006 Jun; 22(13):5932-6. PubMed ID: 16768532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inducing Propulsion of Colloidal Dimers by Breaking the Symmetry in Electrohydrodynamic Flow.
    Ma F; Yang X; Zhao H; Wu N
    Phys Rev Lett; 2015 Nov; 115(20):208302. PubMed ID: 26613479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of surface structure evolution in colloidal adsorption: charge patterning and polydispersity.
    Brewer DD; Tsapatsis M; Kumar S
    J Chem Phys; 2010 Jul; 133(3):034709. PubMed ID: 20649352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal deposition on remotely controlled charged micropatterned surfaces in a parallel-plate flow chamber.
    Kline TR; Chen G; Walker SL
    Langmuir; 2008 Sep; 24(17):9381-5. PubMed ID: 18656970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of multiple electrohydrodynamic forces acting on a colloidal particle near an electrode due to an alternating current electric field.
    Fagan JA; Sides PJ; Prieve DC
    Langmuir; 2005 Mar; 21(5):1784-94. PubMed ID: 15723473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review and perspectives of AFM application on the study of deformable drop/bubble interactions.
    Wang W; Li K; Ma M; Jin H; Angeli P; Gong J
    Adv Colloid Interface Sci; 2015 Nov; 225():88-97. PubMed ID: 26344865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternating current electrokinetic motion of colloidal particles on interdigitated microelectrodes.
    Park S; Beskok A
    Anal Chem; 2008 Apr; 80(8):2832-41. PubMed ID: 18318510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.