These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24648011)

  • 1. Vocal fold ion transport and mucin expression following acrolein exposure.
    Levendoski EE; Sivasankar MP
    J Membr Biol; 2014 May; 247(5):441-50. PubMed ID: 24648011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute Acrolein Exposure Induces Impairment of Vocal Fold Epithelial Barrier Function.
    Liu X; Zheng W; Sivasankar MP
    PLoS One; 2016; 11(9):e0163237. PubMed ID: 27643990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role for ion transport in porcine vocal fold epithelial defense to acid challenge.
    Erickson-Levendoski E; Sivasankar MP
    Otolaryngol Head Neck Surg; 2012 Feb; 146(2):272-8. PubMed ID: 22086905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of long-acting beta adrenergic agonists on vocal fold ion transport.
    Sivasankar M; Blazer-Yost B
    Laryngoscope; 2009 Mar; 119(3):602-7. PubMed ID: 19177504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bicarbonate availability for vocal fold epithelial defense to acidic challenge.
    Durkes A; Sivasankar MP
    Ann Otol Rhinol Laryngol; 2014 Jan; 123(1):71-6. PubMed ID: 24574427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subacute acrolein exposure to rat larynx in vivo.
    Liu X; Durkes AC; Schrock W; Zheng W; Sivasankar MP
    Laryngoscope; 2019 Sep; 129(9):E313-E317. PubMed ID: 30582162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypertonic challenge to porcine vocal folds: effects on epithelial barrier function.
    Sivasankar M; Erickson E; Rosenblatt M; Branski RC
    Otolaryngol Head Neck Surg; 2010 Jan; 142(1):79-84. PubMed ID: 20096227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic adenosine monophosphate regulation of ion transport in porcine vocal fold mucosae.
    Sivasankar M; Nofziger C; Blazer-Yost B
    Laryngoscope; 2008 Aug; 118(8):1511-7. PubMed ID: 18596479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utility of cell viability assays for use with ex vivo vocal fold epithelial tissue.
    Erickson-DiRenzo E; Sivasankar MP; Thibeault SL
    Laryngoscope; 2015 May; 125(5):E180-5. PubMed ID: 25511412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute stress to excised vocal fold epithelium from reactive oxygen species.
    Alper R; Fu X; Erickson-Levendoski E; Zheng W; Sivasankar M
    Laryngoscope; 2011 Oct; 121(10):2180-4. PubMed ID: 21898441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo investigation of acidified pepsin exposure to porcine vocal fold epithelia.
    Durkes A; Sivasankar MP
    Laryngoscope; 2016 Jan; 126(1):E12-7. PubMed ID: 26153224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulated reflux decreases vocal fold epithelial barrier resistance.
    Erickson E; Sivasankar M
    Laryngoscope; 2010 Aug; 120(8):1569-75. PubMed ID: 20564752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute Nanoparticle Exposure to Vocal Folds: A Laboratory Study.
    Liu X; Walimbe T; Schrock WP; Zheng W; Sivasankar MP
    J Voice; 2017 Nov; 31(6):662-668. PubMed ID: 28438490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolonged phonation impairs the integrity and barrier function of porcine vocal fold epithelium: a preliminary study.
    Zhang C; Paddock K; Chou A; Scholp A; Gong T; Jiang JJ
    Eur Arch Otorhinolaryngol; 2018 Jun; 275(6):1547-1556. PubMed ID: 29671091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vocal fold surface hydration: a review.
    Leydon C; Sivasankar M; Falciglia DL; Atkins C; Fisher KV
    J Voice; 2009 Nov; 23(6):658-65. PubMed ID: 19111440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of aldehyde-induced bronchial reactivity: role of airway epithelium.
    Leikauf GD
    Res Rep Health Eff Inst; 1992 Feb; (49):1-35. PubMed ID: 1315139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mainstream Cigarette Smoke Impacts the Mouse Vocal Fold Epithelium and Mucus Barrier.
    Erickson-DiRenzo E; Easwaran M; Martinez JD; Dewan K; Sung CK
    Laryngoscope; 2021 Nov; 131(11):2530-2539. PubMed ID: 33864646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambient Particulate Matter and Acrolein Co-Exposure Increases Myocardial Dyssynchrony in Mice via TRPA1.
    Thompson LC; Walsh L; Martin BL; McGee J; Wood C; Kovalcik K; Pancras JP; Haykal-Coates N; Ledbetter AD; Davies D; Cascio WE; Higuchi M; Hazari MS; Farraj AK
    Toxicol Sci; 2019 Feb; 167(2):559-572. PubMed ID: 30351402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methodology for the establishment of primary porcine vocal fold epithelial cell cultures.
    Erickson-DiRenzo E; Leydon C; Thibeault SL
    Laryngoscope; 2019 Oct; 129(10):E355-E364. PubMed ID: 30848488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of acrolein, a hazardous air pollutant in smoke, on human middle ear epithelial cells.
    Song JJ; Lee JD; Lee BD; Chae SW; Park MK
    Int J Pediatr Otorhinolaryngol; 2013 Oct; 77(10):1659-64. PubMed ID: 23953484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.