These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 24648140)
1. Green synthesized iron oxide nanoparticles effect on fermentative hydrogen production by Clostridium acetobutylicum. Mohanraj S; Kodhaiyolii S; Rengasamy M; Pugalenthi V Appl Biochem Biotechnol; 2014 May; 173(1):318-31. PubMed ID: 24648140 [TBL] [Abstract][Full Text] [Related]
2. Green biosynthesis of magnetic iron oxide (Fe Patra JK; Baek KH J Photochem Photobiol B; 2017 Aug; 173():291-300. PubMed ID: 28623821 [TBL] [Abstract][Full Text] [Related]
3. Antibacterial activity of biochemically capped iron oxide nanoparticles: A view towards green chemistry. Irshad R; Tahir K; Li B; Ahmad A; R Siddiqui A; Nazir S J Photochem Photobiol B; 2017 May; 170():241-246. PubMed ID: 28454048 [TBL] [Abstract][Full Text] [Related]
4. Comparative evaluation of fermentative hydrogen production using Enterobacter cloacae and mixed culture: effect of Pd (II) ion and phytogenic palladium nanoparticles. Mohanraj S; Anbalagan K; Kodhaiyolii S; Pugalenthi V J Biotechnol; 2014 Dec; 192 Pt A():87-95. PubMed ID: 25456058 [TBL] [Abstract][Full Text] [Related]
5. Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Beckers L; Hiligsmann S; Lambert SD; Heinrichs B; Thonart P Bioresour Technol; 2013 Apr; 133():109-17. PubMed ID: 23428815 [TBL] [Abstract][Full Text] [Related]
6. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Philip D; Unni C; Aromal SA; Vidhu VK Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):899-904. PubMed ID: 21215687 [TBL] [Abstract][Full Text] [Related]
7. Sonochemical synthesis of iron oxide nanoparticles loaded with folate and cisplatin: effect of ultrasonic frequency. Dolores R; Raquel S; Adianez GL Ultrason Sonochem; 2015 Mar; 23():391-8. PubMed ID: 25218767 [TBL] [Abstract][Full Text] [Related]
8. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor. Zhang H; Bruns MA; Logan BE Water Res; 2006 Feb; 40(4):728-34. PubMed ID: 16427113 [TBL] [Abstract][Full Text] [Related]
9. Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have anti-bacterial activities. Batool F; Iqbal MS; Khan SU; Khan J; Ahmed B; Qadir MI Sci Rep; 2021 Nov; 11(1):22132. PubMed ID: 34764312 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. Ren Z; Ward TE; Logan BE; Regan JM J Appl Microbiol; 2007 Dec; 103(6):2258-66. PubMed ID: 18045409 [TBL] [Abstract][Full Text] [Related]
11. Green Synthesis and Characterization of Iron Nanoparticles Synthesized from Aqueous Leaf Extract of Nahari MH; Al Ali A; Asiri A; Mahnashi MH; Shaikh IA; Shettar AK; Hoskeri J Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889627 [TBL] [Abstract][Full Text] [Related]
12. Fermentative hydrogen production in an up-flow anaerobic biofilm reactor inoculated with a co-culture of Clostridium acetobutylicum and Desulfovibrio vulgaris. Barca C; Ranava D; Bauzan M; Ferrasse JH; Giudici-Orticoni MT; Soric A Bioresour Technol; 2016 Dec; 221():526-533. PubMed ID: 27686721 [TBL] [Abstract][Full Text] [Related]
13. Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria. Zhao W; Zhang Y; Du B; Wei D; Wei Q; Zhao Y Bioresour Technol; 2013 Aug; 142():240-5. PubMed ID: 23743428 [TBL] [Abstract][Full Text] [Related]
14. Green synthesis of zero-valent Fe-nanoparticles: Catalytic degradation of rhodamine B, interactions with bovine serum albumin and their enhanced antimicrobial activities. Khan Z; Al-Thabaiti SA J Photochem Photobiol B; 2018 Mar; 180():259-267. PubMed ID: 29477891 [TBL] [Abstract][Full Text] [Related]
15. Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Rajiv P; Rajeshwari S; Venckatesh R Spectrochim Acta A Mol Biomol Spectrosc; 2013 Aug; 112():384-7. PubMed ID: 23686093 [TBL] [Abstract][Full Text] [Related]
16. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring. Koskinen PE; Lay CH; Puhakka JA; Lin PJ; Wu SY; Orlygsson J; Lin CY Biotechnol Bioeng; 2008 Nov; 101(4):665-78. PubMed ID: 18814296 [TBL] [Abstract][Full Text] [Related]
17. An electron-flow model can predict complex redox reactions in mixed-culture fermentative bioH2: microbial ecology evidence. Lee HS; Krajmalinik-Brown R; Zhang H; Rittmann BE Biotechnol Bioeng; 2009 Nov; 104(4):687-97. PubMed ID: 19530077 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous production of renewable biohydrogen, biobutanol and biopolymer from phytogenic CoNPs-assisted Clostridial fermentation for sustainable energy and environment. Brindha K; Mohanraj S; Rajaguru P; Pugalenthi V Sci Total Environ; 2023 Feb; 859(Pt 1):160002. PubMed ID: 36356773 [TBL] [Abstract][Full Text] [Related]
19. The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation. Zagrodnik R; Laniecki M Bioresour Technol; 2015 Oct; 194():187-95. PubMed ID: 26196419 [TBL] [Abstract][Full Text] [Related]
20. Removal of headspace CO2 increases biological hydrogen production by C. acetobutylicum. Alshiyab H; Kalil MS; Hamid AA; Yusoff WM Pak J Biol Sci; 2008 Oct; 11(19):2336-40. PubMed ID: 19137867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]