BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24648140)

  • 1. Green synthesized iron oxide nanoparticles effect on fermentative hydrogen production by Clostridium acetobutylicum.
    Mohanraj S; Kodhaiyolii S; Rengasamy M; Pugalenthi V
    Appl Biochem Biotechnol; 2014 May; 173(1):318-31. PubMed ID: 24648140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Green biosynthesis of magnetic iron oxide (Fe
    Patra JK; Baek KH
    J Photochem Photobiol B; 2017 Aug; 173():291-300. PubMed ID: 28623821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibacterial activity of biochemically capped iron oxide nanoparticles: A view towards green chemistry.
    Irshad R; Tahir K; Li B; Ahmad A; R Siddiqui A; Nazir S
    J Photochem Photobiol B; 2017 May; 170():241-246. PubMed ID: 28454048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative evaluation of fermentative hydrogen production using Enterobacter cloacae and mixed culture: effect of Pd (II) ion and phytogenic palladium nanoparticles.
    Mohanraj S; Anbalagan K; Kodhaiyolii S; Pugalenthi V
    J Biotechnol; 2014 Dec; 192 Pt A():87-95. PubMed ID: 25456058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum.
    Beckers L; Hiligsmann S; Lambert SD; Heinrichs B; Thonart P
    Bioresour Technol; 2013 Apr; 133():109-17. PubMed ID: 23428815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles.
    Philip D; Unni C; Aromal SA; Vidhu VK
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):899-904. PubMed ID: 21215687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sonochemical synthesis of iron oxide nanoparticles loaded with folate and cisplatin: effect of ultrasonic frequency.
    Dolores R; Raquel S; Adianez GL
    Ultrason Sonochem; 2015 Mar; 23():391-8. PubMed ID: 25218767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor.
    Zhang H; Bruns MA; Logan BE
    Water Res; 2006 Feb; 40(4):728-34. PubMed ID: 16427113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have anti-bacterial activities.
    Batool F; Iqbal MS; Khan SU; Khan J; Ahmed B; Qadir MI
    Sci Rep; 2021 Nov; 11(1):22132. PubMed ID: 34764312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species.
    Ren Z; Ward TE; Logan BE; Regan JM
    J Appl Microbiol; 2007 Dec; 103(6):2258-66. PubMed ID: 18045409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green Synthesis and Characterization of Iron Nanoparticles Synthesized from Aqueous Leaf Extract of
    Nahari MH; Al Ali A; Asiri A; Mahnashi MH; Shaikh IA; Shettar AK; Hoskeri J
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentative hydrogen production in an up-flow anaerobic biofilm reactor inoculated with a co-culture of Clostridium acetobutylicum and Desulfovibrio vulgaris.
    Barca C; Ranava D; Bauzan M; Ferrasse JH; Giudici-Orticoni MT; Soric A
    Bioresour Technol; 2016 Dec; 221():526-533. PubMed ID: 27686721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria.
    Zhao W; Zhang Y; Du B; Wei D; Wei Q; Zhao Y
    Bioresour Technol; 2013 Aug; 142():240-5. PubMed ID: 23743428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Green synthesis of zero-valent Fe-nanoparticles: Catalytic degradation of rhodamine B, interactions with bovine serum albumin and their enhanced antimicrobial activities.
    Khan Z; Al-Thabaiti SA
    J Photochem Photobiol B; 2018 Mar; 180():259-267. PubMed ID: 29477891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens.
    Rajiv P; Rajeshwari S; Venckatesh R
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Aug; 112():384-7. PubMed ID: 23686093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring.
    Koskinen PE; Lay CH; Puhakka JA; Lin PJ; Wu SY; Orlygsson J; Lin CY
    Biotechnol Bioeng; 2008 Nov; 101(4):665-78. PubMed ID: 18814296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electron-flow model can predict complex redox reactions in mixed-culture fermentative bioH2: microbial ecology evidence.
    Lee HS; Krajmalinik-Brown R; Zhang H; Rittmann BE
    Biotechnol Bioeng; 2009 Nov; 104(4):687-97. PubMed ID: 19530077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous production of renewable biohydrogen, biobutanol and biopolymer from phytogenic CoNPs-assisted Clostridial fermentation for sustainable energy and environment.
    Brindha K; Mohanraj S; Rajaguru P; Pugalenthi V
    Sci Total Environ; 2023 Feb; 859(Pt 1):160002. PubMed ID: 36356773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation.
    Zagrodnik R; Laniecki M
    Bioresour Technol; 2015 Oct; 194():187-95. PubMed ID: 26196419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of headspace CO2 increases biological hydrogen production by C. acetobutylicum.
    Alshiyab H; Kalil MS; Hamid AA; Yusoff WM
    Pak J Biol Sci; 2008 Oct; 11(19):2336-40. PubMed ID: 19137867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.