These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 24648140)

  • 21. Stimulation of ferrihydrite nanorods on fermentative hydrogen production by Clostridium pasteurianum.
    Zhang Y; Xiao L; Wang S; Liu F
    Bioresour Technol; 2019 Jul; 283():308-315. PubMed ID: 30921584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Process optimisation for green synthesis of zero-valent iron nanoparticles using
    Akhbari M; Hajiaghaee R; Ghafarzadegan R; Hamedi S; Yaghoobi M
    IET Nanobiotechnol; 2019 Apr; 13(2):160-169. PubMed ID: 31051446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production.
    Chin HL; Chen ZS; Chou CP
    Biotechnol Prog; 2003; 19(2):383-8. PubMed ID: 12675576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement effect of hematite nanoparticles on fermentative hydrogen production.
    Han H; Cui M; Wei L; Yang H; Shen J
    Bioresour Technol; 2011 Sep; 102(17):7903-9. PubMed ID: 21696950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge.
    Wu SY; Hung CH; Lin CN; Chen HW; Lee AS; Chang JS
    Biotechnol Bioeng; 2006 Apr; 93(5):934-46. PubMed ID: 16329152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic flux network analysis of fermentative hydrogen production: using Clostridium tyrobutyricum as an example.
    Cheng HH; Whang LM; Lin CA; Liu IC; Wu CW
    Bioresour Technol; 2013 Aug; 141():233-9. PubMed ID: 23659760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetite- and maghemite-induced different toxicity in murine alveolar macrophage cells.
    Park EJ; Umh HN; Choi DH; Cho MH; Choi W; Kim SW; Kim Y; Kim JH
    Arch Toxicol; 2014 Aug; 88(8):1607-18. PubMed ID: 24525745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study of bio-fabrication of iron nanoparticles and their fungicidal property against phytopathogens of apple orchards.
    Ahmad H; Rajagopal K; Shah AH; Bhat AH; Venugopal K
    IET Nanobiotechnol; 2017 Apr; 11(3):230-235. PubMed ID: 28476978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies.
    Lo YC; Chen WM; Hung CH; Chen SD; Chang JS
    Water Res; 2008 Feb; 42(4-5):827-42. PubMed ID: 17889245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An unexpected negative influence of light intensity on hydrogen production by dark fermentative bacteria Clostridium beijerinckii.
    Zagrodnik R; Laniecki M
    Bioresour Technol; 2016 Jan; 200():1039-43. PubMed ID: 26602144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fermentative H2 production in an upflow anaerobic sludge blanket reactor at various pH values.
    Zhao QB; Yu HQ
    Bioresour Technol; 2008 Mar; 99(5):1353-8. PubMed ID: 17482810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogen production from starch by co-culture of Clostridium acetobutylicum and Rhodobacter sphaeroides in one step hybrid dark- and photofermentation in repeated fed-batch reactor.
    Zagrodnik R; Łaniecki M
    Bioresour Technol; 2017 Jan; 224():298-306. PubMed ID: 27810246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Feasibility of biohydrogen production from industrial wastes using defined microbial co-culture.
    Chen P; Wang Y; Yan L; Wang Y; Li S; Yan X; Wang N; Liang N; Li H
    Biol Res; 2015 May; 48(1):24. PubMed ID: 25943991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced butanol production by modulation of electron flow in Clostridium acetobutylicum B3 immobilized by surface adsorption.
    Liu D; Chen Y; Li A; Ding F; Zhou T; He Y; Li B; Niu H; Lin X; Xie J; Chen X; Wu J; Ying H
    Bioresour Technol; 2013 Feb; 129():321-8. PubMed ID: 23262007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes.
    Lin R; Cheng J; Ding L; Song W; Liu M; Zhou J; Cen K
    Bioresour Technol; 2016 May; 207():213-9. PubMed ID: 26890796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum.
    Dan Jiang ; Fang Z; Chin SX; Tian XF; Su TC
    Sci Rep; 2016 Jun; 6():27205. PubMed ID: 27251222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly efficient catalytic degradation of organic dyes using iron nanoparticles synthesized with Vernonia Amygdalina leaf extract.
    Jara YS; Mekiso TT; Washe AP
    Sci Rep; 2024 Mar; 14(1):6997. PubMed ID: 38523139
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feasibility of installing and maintaining anaerobiosis using Escherichia coli HD701 as a facultative anaerobe for hydrogen production by Clostridium acetobutylicum ATCC 824 from various carbohydrates.
    Hassan SH; Morsy FM
    Enzyme Microb Technol; 2015 Dec; 81():56-62. PubMed ID: 26453472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalytic Degradation of Dichlorvos Using Biosynthesized Zero Valent Iron Nanoparticles.
    Mehrotra N; Tripathi RM; Zafar F; Singh MP
    IEEE Trans Nanobioscience; 2017 Jun; 16(4):280-286. PubMed ID: 28475065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Continuous hydrogen production from organic waste.
    Noike T; Ko IB; Yokoyama S; Kohno Y; Li YY
    Water Sci Technol; 2005; 52(1-2):145-51. PubMed ID: 16180421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.