These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24648140)

  • 41. Dual substrate strategy to enhance butanol production using high cell inoculum and its efficient recovery by pervaporation.
    Yadav S; Rawat G; Tripathi P; Saxena RK
    Bioresour Technol; 2014; 152():377-83. PubMed ID: 24316481
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping.
    Lu C; Zhao J; Yang ST; Wei D
    Bioresour Technol; 2012 Jan; 104():380-7. PubMed ID: 22101071
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reaction engineering studies of acetone-butanol-ethanol fermentation with Clostridium acetobutylicum.
    Schmidt M; Weuster-Botz D
    Biotechnol J; 2012 May; 7(5):656-61. PubMed ID: 22213682
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimization of dark fermentative biohydrogen production from rice starch by Enterobacter aerogenes MTCC 2822 and Clostridium acetobutylicum MTCC 11274.
    Jayachandran V; Basak N
    Bioprocess Biosyst Eng; 2023 Apr; 46(4):535-553. PubMed ID: 36547731
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biohydrogen production through dark fermentation by a microbial consortium using whey permeate as substrate.
    Romão BB; Batista FR; Ferreira JS; Costa HC; Resende MM; Cardoso VL
    Appl Biochem Biotechnol; 2014 Apr; 172(7):3670-85. PubMed ID: 24562979
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid.
    Jang YS; Woo HM; Im JA; Kim IH; Lee SY
    Appl Microbiol Biotechnol; 2013 Nov; 97(21):9355-63. PubMed ID: 24013291
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biosynthesis, Characterization, and Biological Activities of Iron Nanoparticles using
    Bano F; Baber M; Ali A; Shah Z; Muhammad SA
    Pharmacogn Mag; 2017 Jan; 13(Suppl 1):S33-S36. PubMed ID: 28479723
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19.
    Jang YS; Malaviya A; Lee SY
    Biotechnol Bioeng; 2013 Jun; 110(6):1646-53. PubMed ID: 23335317
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Caproate formation in mixed-culture fermentative hydrogen production.
    Ding HB; Tan GY; Wang JY
    Bioresour Technol; 2010 Dec; 101(24):9550-9. PubMed ID: 20696576
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterizations of diverse mole of pure and Ni-doped α-Fe2O3 synthesized nanoparticles through chemical precipitation route.
    Sivakumar S; Anusuya D; Khatiwada CP; Sivasubramanian J; Venkatesan A; Soundhirarajan P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():69-75. PubMed ID: 24681311
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Continuous two stage acetone-butanol-ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B 5313.
    Bankar SB; Survase SA; Singhal RS; Granström T
    Bioresour Technol; 2012 Feb; 106():110-6. PubMed ID: 22197332
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of some environmental parameters on hydrogen production using C. acetobutylicum.
    Alshiyab H; Kalil MS; Hamid AA; Yusoff WM
    Pak J Biol Sci; 2008 Sep; 11(17):2073-82. PubMed ID: 19266920
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.
    Wu YD; Xue C; Chen LJ; Bai FW
    J Biotechnol; 2013 May; 165(1):18-21. PubMed ID: 23458964
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Unrevealing the role of metal oxide nanoparticles on biohydrogen production by Lactobacillus delbrueckii.
    Sivagurunathan P; Sahoo PC; Kumar M; Prakash Gupta R; Bhattacharyya D; Ramakumar SSV
    Bioresour Technol; 2023 Jan; 367():128260. PubMed ID: 36343775
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Kinetics study of fermentative hydrogen production from liquid swine manure supplemented with glucose under controlled pH.
    Wu X; Zhu J; Miller C
    J Environ Sci Health B; 2013; 48(6):477-85. PubMed ID: 23452213
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of recycling the effluent of hydrogen fermentation for biobutanol production: kinetic study with butyrate and sucrose concentrations.
    Chen WH; Jian ZC
    Chemosphere; 2013 Oct; 93(4):597-603. PubMed ID: 23866171
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of ptb knockout on butyric acid fermentation by Clostridium tyrobutyricum.
    Zhang Y; Yu M; Yang ST
    Biotechnol Prog; 2012; 28(1):52-9. PubMed ID: 22038864
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New insights into the butyric acid metabolism of Clostridium acetobutylicum.
    Lehmann D; Radomski N; Lütke-Eversloh T
    Appl Microbiol Biotechnol; 2012 Dec; 96(5):1325-39. PubMed ID: 22576943
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract.
    Subba Rao Y; Kotakadi VS; Prasad TN; Reddy AV; Sai Gopal DV
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():156-9. PubMed ID: 23257344
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of pH in the fermentative H2 production from an acidogenic granule-based reactor.
    Mu Y; Yu HQ; Wang Y
    Chemosphere; 2006 Jun; 64(3):350-8. PubMed ID: 16466779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.