These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24648227)

  • 1. Commuting fruit bats beneficially modulate their flight in relation to wind.
    Sapir N; Horvitz N; Dechmann DK; Fahr J; Wikelski M
    Proc Biol Sci; 2014 May; 281(1782):20140018. PubMed ID: 24648227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird.
    Mitchell GW; Woodworth BK; Taylor PD; Norris DR
    Mov Ecol; 2015; 3(1):19. PubMed ID: 26279850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soaring migrants flexibly respond to sea-breeze in a migratory bottleneck: using first derivatives to identify behavioural adjustments over time.
    Becciu P; Troupin D; Dinevich L; Leshem Y; Sapir N
    Mov Ecol; 2023 Jul; 11(1):44. PubMed ID: 37501209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pronounced Seasonal Changes in the Movement Ecology of a Highly Gregarious Central-Place Forager, the African Straw-Coloured Fruit Bat (Eidolon helvum).
    Fahr J; Abedi-Lartey M; Esch T; Machwitz M; Suu-Ire R; Wikelski M; Dechmann DK
    PLoS One; 2015; 10(10):e0138985. PubMed ID: 26465139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nathusius' bats optimize long-distance migration by flying at maximum range speed.
    Troxell SA; Holderied MW; Pētersons G; Voigt CC
    J Exp Biol; 2019 Feb; 222(Pt 4):. PubMed ID: 30814276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing roost disturbance of straw-coloured fruit bats (Eidolon helvum) through tri-axial acceleration.
    Costa TD; Santos CD; Rainho A; Abedi-Lartey M; Fahr J; Wikelski M; Dechmann DKN
    PLoS One; 2020; 15(11):e0242662. PubMed ID: 33226991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The problem of estimating wind drift in migrating birds.
    Green M; Alerstam T
    J Theor Biol; 2002 Oct; 218(4):485-96. PubMed ID: 12384051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flight speed and performance of the wandering albatross with respect to wind.
    Richardson PL; Wakefield ED; Phillips RA
    Mov Ecol; 2018; 6():3. PubMed ID: 29556395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensation for wind drift in the nocturnally migrating Song Thrushes in relation to altitude and wind.
    Sinelschikova A; Vorotkov M; Bulyuk V; Bolshakov C
    Behav Processes; 2020 Aug; 177():104154. PubMed ID: 32479841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haematological Studies and Micronucleus Assay of Straw-Coloured Fruit Bats (Eidolon helvum).
    Olopade JO; Anosike F; Lanipekun DO; Adebiyi OE; Ogunsuyi OM; Bakare AA
    Niger J Physiol Sci; 2020 Dec; 35(2):181-186. PubMed ID: 34009208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airplane tracking documents the fastest flight speeds recorded for bats.
    McCracken GF; Safi K; Kunz TH; Dechmann DK; Swartz SM; Wikelski M
    R Soc Open Sci; 2016 Nov; 3(11):160398. PubMed ID: 28018618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confronting the winds: orientation and flight behaviour of roosting swifts, Apus apus.
    Bäckman J; Alerstam T
    Proc Biol Sci; 2001 May; 268(1471):1081-7. PubMed ID: 11375093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Habitat use of bats in relation to wind turbines revealed by GPS tracking.
    Roeleke M; Blohm T; Kramer-Schadt S; Yovel Y; Voigt CC
    Sci Rep; 2016 Jul; 6():28961. PubMed ID: 27373219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flying with the wind: scale dependency of speed and direction measurements in modelling wind support in avian flight.
    Safi K; Kranstauber B; Weinzierl R; Griffin L; Rees EC; Cabot D; Cruz S; Proaño C; Takekawa JY; Newman SH; Waldenström J; Bengtsson D; Kays R; Wikelski M; Bohrer G
    Mov Ecol; 2013; 1(1):4. PubMed ID: 25709818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of body size on the wing movements of pteropodid bats, with insights into thrust and lift production.
    Riskin DK; Iriarte-Díaz J; Middleton KM; Breuer KS; Swartz SM
    J Exp Biol; 2010 Dec; 213(Pt 23):4110-22. PubMed ID: 21075953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flight metabolism in relation to speed in Chiroptera: testing the U-shape paradigm in the short-tailed fruit bat Carollia perspicillata.
    von Busse R; Swartz SM; Voigt CC
    J Exp Biol; 2013 Jun; 216(Pt 11):2073-80. PubMed ID: 23430989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism during flight in two species of bats, Phyllostomus hastatus and Pteropus gouldii.
    Thomas SP
    J Exp Biol; 1975 Aug; 63(1):273-93. PubMed ID: 1159367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flight costs in volant vertebrates: A phylogenetically-controlled meta-analysis of birds and bats.
    Guigueno MF; Shoji A; Elliott KH; Aris-Brosou S
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Sep; 235():193-201. PubMed ID: 31195122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.
    Muijres FT; Johansson LC; Bowlin MS; Winter Y; Hedenström A
    PLoS One; 2012; 7(5):e37335. PubMed ID: 22624018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Risk-sensitive response of soaring birds to crosswind over dangerous sea highlights age-specific differences in migratory performance.
    Santos CD; Sapir N; Becciu P; Granadeiro JP; Wikelski M
    Proc Biol Sci; 2024 May; 291(2023):20240454. PubMed ID: 38807519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.