BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 24648298)

  • 1. Modeling oxyanion adsorption on ferralic soil, part 2: chromate, selenate, molybdate, and arsenate adsorption.
    Pérez C; Antelo J; Fiol S; Arce F
    Environ Toxicol Chem; 2014 Oct; 33(10):2217-24. PubMed ID: 24648298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling oxyanion adsorption on ferralic soil, part 1: parameter validation with phosphate ion.
    Pérez C; Antelo J; Fiol S; Arce F
    Environ Toxicol Chem; 2014 Oct; 33(10):2208-16. PubMed ID: 24838985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpreting competitive adsorption of arsenate and phosphate on nanosized iron (hydr)oxides: effects of pH and surface loading.
    Han J; Ro HM
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28572-28582. PubMed ID: 30091077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of selenate adsorption on iron oxides and hydroxides.
    Peak D; Sparks DL
    Environ Sci Technol; 2002 Apr; 36(7):1460-6. PubMed ID: 11999051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenate and phosphate adsorption in relation to oxides composition in soils: LCD modeling.
    Cui Y; Weng L
    Environ Sci Technol; 2013 Jul; 47(13):7269-76. PubMed ID: 23751067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the competitive effect of phosphate, sulfate, silicate, and tungstate anions on the adsorption of molybdate onto goethite.
    Xu N; Christodoulatos C; Braida W
    Chemosphere; 2006 Aug; 64(8):1325-33. PubMed ID: 16466766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of ferrolysis in arsenate adsorption on the paddy soil derived from an Oxisol.
    Jiang J; Dai Z; Sun R; Zhao Z; Dong Y; Hong Z; Xu R
    Chemosphere; 2017 Jul; 179():232-241. PubMed ID: 28371707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive adsorption and desorption of arsenate, vanadate, and molybdate onto the low-cost adsorbent materials alum water treatment sludge and bauxite.
    Hua T; Haynes RJ; Zhou YF
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):34053-34062. PubMed ID: 30280345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption and speciation of selenium in boreal forest soil.
    Söderlund M; Virkanen J; Holgersson S; Lehto J
    J Environ Radioact; 2016 Nov; 164():220-231. PubMed ID: 27521902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of selenate from selenite, carbonate, phosphate, and arsenate solutions for δ
    Xia L; Schellenger AEP; Onnis-Hayden A; Jaisi D; Larese-Casanova P
    Isotopes Environ Health Stud; 2020 Jun; 56(3):297-313. PubMed ID: 32138548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of Chromate, Selenate, and Sulfate Adsorption on Al-Substituted Ferrihydrite: Implications for Ferrihydrite Surface Structure and Reactivity.
    Johnston CP; Chrysochoou M
    Environ Sci Technol; 2016 Apr; 50(7):3589-96. PubMed ID: 26900715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenate and Selenate Scavenging by Basaluminite: Insights into the Reactivity of Aluminum Phases in Acid Mine Drainage.
    Carrero S; Fernandez-Martinez A; Pérez-López R; Poulain A; Salas-Colera E; Nieto JM
    Environ Sci Technol; 2017 Jan; 51(1):28-37. PubMed ID: 27995804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption-desorption reactions of selenium (VI) in tropical cultivated and uncultivated soils under Cerrado biome.
    Lessa JH; Araujo AM; Silva GN; Guilherme LR; Lopes G
    Chemosphere; 2016 Dec; 164():271-277. PubMed ID: 27592316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles.
    Saikia J; Saha B; Das G
    J Hazard Mater; 2011 Feb; 186(1):575-82. PubMed ID: 21144648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial transport of sulfate, molybdate, and related oxyanions.
    Aguilar-Barajas E; Díaz-Pérez C; Ramírez-Díaz MI; Riveros-Rosas H; Cervantes C
    Biometals; 2011 Aug; 24(4):687-707. PubMed ID: 21301930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fe(3+) coordinated to amino-functionalized MCM-41: an adsorbent for the toxic oxyanions with high capacity, resistibility to inhibiting anions, and reusability after a simple treatment.
    Yokoi T; Tatsumi T; Yoshitake H
    J Colloid Interface Sci; 2004 Jun; 274(2):451-7. PubMed ID: 15144816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of oxyanions from synthetic wastewater via carbonation process of calcium hydroxide: applied and fundamental aspects.
    Montes-Hernandez G; Concha-Lozano N; Renard F; Quirico E
    J Hazard Mater; 2009 Jul; 166(2-3):788-95. PubMed ID: 19135792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of anions sorption on natural zeolites.
    Barczyk K; Mozgawa W; Król M
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():876-82. PubMed ID: 25002191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate in welding fume alkaline extracts by HPLC-ICP-MS.
    Ščančar J; Berlinger B; Thomassen Y; Milačič R
    Talanta; 2015 Sep; 142():164-9. PubMed ID: 26003707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Cu(II) on the stability of oxyanion-substituted schwertmannite.
    Li J; Xie Y; Lu G; Ye H; Yi X; Reinfelder JR; Lin Z; Dang Z
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15492-15506. PubMed ID: 29569199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.