These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 24648509)
1. N-terminal proline-rich domain is required for scrambling activity of human phospholipid scramblases. Rayala S; Francis VG; Sivagnanam U; Gummadi SN J Biol Chem; 2014 May; 289(19):13206-18. PubMed ID: 24648509 [TBL] [Abstract][Full Text] [Related]
2. Calcium binding studies of peptides of human phospholipid scramblases 1 to 4 suggest that scramblases are new class of calcium binding proteins in the cell. Sahu SK; Aradhyam GK; Gummadi SN Biochim Biophys Acta; 2009 Oct; 1790(10):1274-81. PubMed ID: 19540310 [TBL] [Abstract][Full Text] [Related]
3. Are cysteine residues of human phospholipid scramblase 1 essential for Pb Shettihalli AK; Palanirajan SK; Gummadi SN Eur Biophys J; 2021 Jul; 50(5):745-757. PubMed ID: 33787949 [TBL] [Abstract][Full Text] [Related]
4. The single C-terminal helix of human phospholipid scramblase 1 is required for membrane insertion and scrambling activity. Francis VG; Mohammed AM; Aradhyam GK; Gummadi SN FEBS J; 2013 Jun; 280(12):2855-69. PubMed ID: 23590222 [TBL] [Abstract][Full Text] [Related]
5. Identification and characterization of the novel nuclease activity of human phospholipid scramblase 1. Sivagnanam U; Narayana Murthy S; Gummadi SN BMC Biochem; 2016 May; 17(1):10. PubMed ID: 27206388 [TBL] [Abstract][Full Text] [Related]
6. Biophysical characterization of the DNA binding motif of human phospholipid scramblase 1. Rayala S; Sivagnanam U; Gummadi SN Eur Biophys J; 2022 Dec; 51(7-8):579-593. PubMed ID: 36260146 [TBL] [Abstract][Full Text] [Related]
7. Biochemical evidence for lead and mercury induced transbilayer movement of phospholipids mediated by human phospholipid scramblase 1. Shettihalli AK; Gummadi SN Chem Res Toxicol; 2013 Jun; 26(6):918-25. PubMed ID: 23659204 [TBL] [Abstract][Full Text] [Related]
8. Interaction of human phospholipid scramblase 1 with cholesterol via CRAC motif is essential for functional regulation and subcellular localization. Koyiloth M; Gummadi SN Int J Biol Macromol; 2022 Jun; 209(Pt A):850-857. PubMed ID: 35439477 [TBL] [Abstract][Full Text] [Related]
9. Two c-Myc binding sites are crucial in upregulating the expression of human phospholipid scramblase 1 gene. Vinnakota JM; Gummadi SN Biochem Biophys Res Commun; 2016 Jan; 469(3):412-7. PubMed ID: 26679604 [TBL] [Abstract][Full Text] [Related]
10. The role of human phospholipid scramblases in apoptosis: An overview. Sivagnanam U; Palanirajan SK; Gummadi SN Biochim Biophys Acta Mol Cell Res; 2017 Dec; 1864(12):2261-2271. PubMed ID: 28844836 [TBL] [Abstract][Full Text] [Related]
11. Biochemical evidence for Ca2+-independent functional activation of hPLSCR1 at low pH. Francis VG; Gummadi SN Cell Mol Biol Lett; 2015 Jun; 20(2):177-95. PubMed ID: 26204401 [TBL] [Abstract][Full Text] [Related]
12. Heavy-Metals-Mediated Phospholipids Scrambling by Human Phospholipid Scramblase 3: A Probable Role in Mitochondrial Apoptosis. Palanirajan SK; Gummadi SN Chem Res Toxicol; 2020 Feb; 33(2):553-564. PubMed ID: 31769662 [TBL] [Abstract][Full Text] [Related]
13. Over-expression of recombinant human phospholipid scramblase 1 in E. coli and its purification from inclusion bodies. Sahu SK; Gopala Krishna A; Gummadi SN Biotechnol Lett; 2008 Dec; 30(12):2131-7. PubMed ID: 18629440 [TBL] [Abstract][Full Text] [Related]
14. Rapid method for an enhanced recovery of biologically active human phospholipid scramblase1 from inclusion bodies. Palanirajan SK; Gummadi SN Anal Biochem; 2018 Sep; 556():104-111. PubMed ID: 29964029 [TBL] [Abstract][Full Text] [Related]
15. Recovery of functionally active recombinant human phospholipid scramblase 1 from inclusion bodies using N-lauroyl sarcosine. Francis VG; Majeed MA; Gummadi SN J Ind Microbiol Biotechnol; 2012 Jul; 39(7):1041-8. PubMed ID: 22389205 [TBL] [Abstract][Full Text] [Related]
16. Cholesterol interaction attenuates scramblase activity of SCRM-1 in the artificial membrane. Koyiloth M; Gummadi SN Biochim Biophys Acta Biomembr; 2021 Sep; 1863(9):183548. PubMed ID: 33417966 [TBL] [Abstract][Full Text] [Related]
17. Scrambling of natural and fluorescently tagged phosphatidylinositol by reconstituted G protein-coupled receptor and TMEM16 scramblases. Wang L; Iwasaki Y; Andra KK; Pandey K; Menon AK; Bütikofer P J Biol Chem; 2018 Nov; 293(47):18318-18327. PubMed ID: 30287690 [TBL] [Abstract][Full Text] [Related]
18. GroES and GroEL are essential chaperones for refolding of recombinant human phospholipid scramblase 1 in E. coli. Sahu SK; Rajasekharan A; Gummadi SN Biotechnol Lett; 2009 Nov; 31(11):1745-52. PubMed ID: 19590828 [TBL] [Abstract][Full Text] [Related]
19. Phospholipid scrambling by a TMEM16 homolog of Arabidopsis thaliana. Boccaccio A; Picco C; Di Zanni E; Scholz-Starke J FEBS J; 2022 May; 289(9):2578-2592. PubMed ID: 34775680 [TBL] [Abstract][Full Text] [Related]
20. In vitro reconstitution and biochemical characterization of human phospholipid scramblase 3: phospholipid specificity and metal ion binding studies. Palanirajan SK; Sivagnanam U; Murugan S; Gummadi SN Biol Chem; 2018 Mar; 399(4):361-374. PubMed ID: 29337693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]