These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 24649397)

  • 1. Stabilization of cyclohexanone monooxygenase by a computationally designed disulfide bond spanning only one residue.
    van Beek HL; Wijma HJ; Fromont L; Janssen DB; Fraaije MW
    FEBS Open Bio; 2014; 4():168-74. PubMed ID: 24649397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of disulfide bond introduction and related Cys/Ser mutations on the stability of a cyclohexanone monooxygenase.
    Schmidt S; Genz M; Balke K; Bornscheuer UT
    J Biotechnol; 2015 Nov; 214():199-211. PubMed ID: 26410456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo, High-Throughput Selection of Thermostable Cyclohexanone Monooxygenase (CHMO).
    Maxel S; Zhang L; King E; Acosta AP; Luo R; Li H
    Catalysts; 2020 Aug; 10(8):. PubMed ID: 37637965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of cyclohexanone monooxygenase by computational and experimental library design.
    Fürst MJLJ; Boonstra M; Bandstra S; Fraaije MW
    Biotechnol Bioeng; 2019 Sep; 116(9):2167-2177. PubMed ID: 31124128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards practical Baeyer-Villiger-monooxygenases: design of cyclohexanone monooxygenase mutants with enhanced oxidative stability.
    Opperman DJ; Reetz MT
    Chembiochem; 2010 Dec; 11(18):2589-96. PubMed ID: 21080396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic mechanism of phenylacetone monooxygenase from Thermobifida fusca.
    Torres Pazmiño DE; Baas BJ; Janssen DB; Fraaije MW
    Biochemistry; 2008 Apr; 47(13):4082-93. PubMed ID: 18321069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed evolution of phenylacetone monooxygenase as an active catalyst for the Baeyer-Villiger conversion of cyclohexanone to caprolactone.
    Parra LP; Acevedo JP; Reetz MT
    Biotechnol Bioeng; 2015 Jul; 112(7):1354-64. PubMed ID: 25675885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved homology model of cyclohexanone monooxygenase from Acinetobacter calcoaceticus based on multiple templates.
    Bermúdez E; Ventura ON; Eriksson LA; Saenz-Méndez P
    Comput Biol Chem; 2014 Apr; 49():14-22. PubMed ID: 24530814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blending Baeyer-Villiger monooxygenases: using a robust BVMO as a scaffold for creating chimeric enzymes with novel catalytic properties.
    van Beek HL; de Gonzalo G; Fraaije MW
    Chem Commun (Camb); 2012 Apr; 48(27):3288-90. PubMed ID: 22286124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselective sulfoxidations employing the thermostable cyclohexanone monooxygenase from Thermocrispum municipale.
    de Gonzalo G; Franconetti A
    Enzyme Microb Technol; 2018 Jun; 113():24-28. PubMed ID: 29602383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the structural basis of substrate preferences in Baeyer-Villiger monooxygenases: insight from steroid monooxygenase.
    Franceschini S; van Beek HL; Pennetta A; Martinoli C; Fraaije MW; Mattevi A
    J Biol Chem; 2012 Jun; 287(27):22626-34. PubMed ID: 22605340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a new Baeyer-Villiger monooxygenase and conversion to a solely N-or S-oxidizing enzyme by a single R292 mutation.
    Catucci G; Zgrablic I; Lanciani F; Valetti F; Minerdi D; Ballou DP; Gilardi G; Sadeghi SJ
    Biochim Biophys Acta; 2016 Sep; 1864(9):1177-1187. PubMed ID: 27344049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active site variants provide insight into the nature of conformational changes that accompany the cyclohexanone monooxygenase catalytic cycle.
    Fordwour OB; Wolthers KR
    Arch Biochem Biophys; 2018 Sep; 654():85-96. PubMed ID: 30030997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and Catalytic Characterization of a Fungal Baeyer-Villiger Monooxygenase.
    Ferroni FM; Tolmie C; Smit MS; Opperman DJ
    PLoS One; 2016; 11(7):e0160186. PubMed ID: 27472055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein engineering of stereoselective Baeyer-Villiger monooxygenases.
    Zhang ZG; Parra LP; Reetz MT
    Chemistry; 2012 Aug; 18(33):10160-72. PubMed ID: 22807240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of different biocatalyst formats for BVMO-catalyzed cyclohexanone oxidation.
    Bretschneider L; Heuschkel I; Ahmed A; Bühler K; Karande R; Bühler B
    Biotechnol Bioeng; 2021 Jul; 118(7):2719-2733. PubMed ID: 33844297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a thermostable Baeyer-Villiger monooxygenase for the synthesis of branched polyester precursors.
    Delgove MA; Elford MT; Bernaerts KV; De Wildeman SM
    J Chem Technol Biotechnol; 2018 Aug; 93(8):2131-2140. PubMed ID: 30069077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and Crystal Structure of a Robust Cyclohexanone Monooxygenase.
    Romero E; Castellanos JR; Mattevi A; Fraaije MW
    Angew Chem Int Ed Engl; 2016 Dec; 55(51):15852-15855. PubMed ID: 27873437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switch in Cofactor Specificity of a Baeyer-Villiger Monooxygenase.
    Beier A; Bordewick S; Genz M; Schmidt S; van den Bergh T; Peters C; Joosten HJ; Bornscheuer UT
    Chembiochem; 2016 Dec; 17(24):2312-2315. PubMed ID: 27735116
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Milker S; Goncalves LCP; Fink MJ; Rudroff F
    Front Microbiol; 2017; 8():2201. PubMed ID: 29180987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.