BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 2464995)

  • 1. Dependence of cardiac mitochondrial pyruvate dehydrogenase activity on intramitochondrial free Ca2+ concentration.
    Moreno-Sánchez R; Hansford RG
    Biochem J; 1988 Dec; 256(2):403-12. PubMed ID: 2464995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria.
    Denton RM; McCormack JG; Edgell NJ
    Biochem J; 1980 Jul; 190(1):107-17. PubMed ID: 6160850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of micromolar concentrations of free Ca2+ ions on pyruvate dehydrogenase interconversion in intact rat heart mitochondria.
    Hansford RG
    Biochem J; 1981 Mar; 194(3):721-32. PubMed ID: 6796064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Evidence from studies with isolated mitochondria that adrenaline activates the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes by increasing the intramitochondrial concentration of Ca2+.
    McCormack JG; Denton RM
    Biochem J; 1984 Feb; 218(1):235-47. PubMed ID: 6424656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of spermine on mitochondrial Ca2+ transport and the ranges of extramitochondrial Ca2+ to which the matrix Ca2+-sensitive dehydrogenases respond.
    McCormack JG
    Biochem J; 1989 Nov; 264(1):167-74. PubMed ID: 2604711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria.
    McCormack JG
    Biochem J; 1985 Nov; 231(3):581-95. PubMed ID: 3000355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on mitochondrial Ca2+-transport and matrix Ca2+ using fura-2-loaded rat heart mitochondria.
    McCormack JG; Browne HM; Dawes NJ
    Biochim Biophys Acta; 1989 Mar; 973(3):420-7. PubMed ID: 2923871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Ca2+ in pyruvate dehydrogenase interconversion in brain mitochondria and synaptosomes.
    Hansford RG; Castro F
    Biochem J; 1985 Apr; 227(1):129-36. PubMed ID: 2581558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The loading of fura-2 into mitochondria in the intact perfused rat heart and its use to estimate matrix Ca2+ under various conditions.
    Allen SP; Stone D; McCormack JG
    J Mol Cell Cardiol; 1992 Jul; 24(7):765-73. PubMed ID: 1383555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat epididymal adipose tissue. Evidence against a role for Ca2+ in the activation of pyruvate dehydrogenase by insulin.
    Marshall SE; McCormack JG; Denton RM
    Biochem J; 1984 Feb; 218(1):249-60. PubMed ID: 6324751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramitochondrial free calcium in cardiac myocytes in relation to dehydrogenase activation.
    Di Lisa F; Gambassi G; Spurgeon H; Hansford RG
    Cardiovasc Res; 1993 Oct; 27(10):1840-4. PubMed ID: 8275533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct evidence for a role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in the stimulated rat heart. Studies using 31P n.m.r. and ruthenium red.
    Unitt JF; McCormack JG; Reid D; MacLachlan LK; England PJ
    Biochem J; 1989 Aug; 262(1):293-301. PubMed ID: 2479373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fatty acids and ketones on the activity of pyruvate dehydrogenase in skeletal-muscle mitochondria.
    Ashour B; Hansford RG
    Biochem J; 1983 Sep; 214(3):725-36. PubMed ID: 6138029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of the Ca2(+)-sensitive intramitochondrial dehydrogenases and entrapped fura-2 to study Sr2+ and Ba2+ transport across the inner membrane of mammalian mitochondria.
    McCormack JG; Osbaldeston NJ
    Eur J Biochem; 1990 Aug; 192(1):239-44. PubMed ID: 2401295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between spermine and Mg2+ on mitochondrial Ca2+ transport.
    Lenzen S; Hickethier R; Panten U
    J Biol Chem; 1986 Dec; 261(35):16478-83. PubMed ID: 3782131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relation between cytosolic free Ca2+ concentration and the control of pyruvate dehydrogenase in isolated cardiac myocytes.
    Hansford RG
    Biochem J; 1987 Jan; 241(1):145-51. PubMed ID: 2436608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the interactions of Ca2+ and pyruvate in the regulation of rat heart pyruvate dehydrogenase activity. Effects of starvation and diabetes.
    McCormack JG; Edgell NJ; Denton RM
    Biochem J; 1982 Feb; 202(2):419-27. PubMed ID: 7092823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PUFA and aging modulate cardiac mitochondrial membrane lipid composition and Ca2+ activation of PDH.
    Pepe S; Tsuchiya N; Lakatta EG; Hansford RG
    Am J Physiol; 1999 Jan; 276(1):H149-58. PubMed ID: 9887028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of micromolar concentrations of free calcium ions on the reduction of heart mitochondrial NAD(P) by 2-oxoglutarate.
    Hansford RG; Castro F
    Biochem J; 1981 Sep; 198(3):525-33. PubMed ID: 6275851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of citric acid cycle by calcium.
    Wan B; LaNoue KF; Cheung JY; Scaduto RC
    J Biol Chem; 1989 Aug; 264(23):13430-9. PubMed ID: 2503501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.