BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 2465004)

  • 21. Structural models of ribonuclease H domains in reverse transcriptases from retroviruses.
    Nakamura H; Katayanagi K; Morikawa K; Ikehara M
    Nucleic Acids Res; 1991 Apr; 19(8):1817-23. PubMed ID: 1709492
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amino acid substitutions away from the RNase H catalytic site increase the thermal stability of Moloney murine leukemia virus reverse transcriptase through RNase H inactivation.
    Konishi A; Hisayoshi T; Yokokawa K; Barrioluengo V; Menéndez-Arias L; Yasukawa K
    Biochem Biophys Res Commun; 2014 Nov; 454(2):269-74. PubMed ID: 25450388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Point mutations in conserved amino acid residues within the C-terminal domain of HIV-1 reverse transcriptase specifically repress RNase H function.
    Schatz O; Cromme FV; Grüninger-Leitch F; Le Grice SF
    FEBS Lett; 1989 Nov; 257(2):311-4. PubMed ID: 2479577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Replication of phenotypically mixed human immunodeficiency virus type 1 virions containing catalytically active and catalytically inactive reverse transcriptase.
    Julias JG; Ferris AL; Boyer PL; Hughes SH
    J Virol; 2001 Jul; 75(14):6537-46. PubMed ID: 11413321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redesignation of the RNase D activity associated with retroviral reverse transcriptase as RNase H.
    Hostomsky Z; Hughes SH; Goff SP; Le Grice SF
    J Virol; 1994 Mar; 68(3):1970-1. PubMed ID: 7509004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linker insertion mutagenesis of the human immunodeficiency virus reverse transcriptase expressed in bacteria: definition of the minimal polymerase domain.
    Prasad VR; Goff SP
    Proc Natl Acad Sci U S A; 1989 May; 86(9):3104-8. PubMed ID: 2470090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ribonuclease H(70) from Saccharomyces cerevisiae possesses cryptic reverse transcriptase activity.
    Karwan R; Kühne C; Wintersberger U
    Proc Natl Acad Sci U S A; 1986 Aug; 83(16):5919-23. PubMed ID: 2426707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNase H cleavage of tRNAPro mediated by M-MuLV and HIV-1 reverse transcriptases.
    Smith CM; Potts WB; Smith JS; Roth MJ
    Virology; 1997 Mar; 229(2):437-46. PubMed ID: 9126256
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression in Escherichia coli of a Moloney murine leukemia virus reverse transcriptase whose structure closely resembles the viral enzyme.
    Hizi A; Hughes SH
    Gene; 1988 Jun; 66(2):319-23. PubMed ID: 2458989
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Folding the ribonuclease H domain of Moloney murine leukemia virus reverse transcriptase requires metal binding or a short N-terminal extension.
    Goedken ER; Marqusee S
    Proteins; 1998 Oct; 33(1):135-43. PubMed ID: 9741851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of retroviral pol gene products with antisera raised against fusion proteins produced in Escherichia coli.
    Tanese N; Roth MJ; Goff SP
    J Virol; 1986 Aug; 59(2):328-40. PubMed ID: 2426463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. RNase H activity is required for high-frequency repeat deletion during Moloney murine leukemia virus replication.
    Brincat JL; Pfeiffer JK; Telesnitsky A
    J Virol; 2002 Jan; 76(1):88-95. PubMed ID: 11739674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Double-stranded RNA-dependent RNase activity associated with human immunodeficiency virus type 1 reverse transcriptase.
    Ben-Artzi H; Zeelon E; Gorecki M; Panet A
    Proc Natl Acad Sci U S A; 1992 Feb; 89(3):927-31. PubMed ID: 1371014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNase H activity associated with bacterially expressed reverse transcriptase of human T-cell lymphotropic virus III/lymphadenopathy-associated virus.
    Hansen J; Schulze T; Moelling K
    J Biol Chem; 1987 Sep; 262(26):12393-6. PubMed ID: 2442162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Substitution of Asp114 or Arg116 in the fingers domain of moloney murine leukemia virus reverse transcriptase affects interactions with the template-primer resulting in decreased processivity.
    Gu J; Villanueva RA; Snyder CS; Roth MJ; Georgiadis MM
    J Mol Biol; 2001 Jan; 305(2):341-59. PubMed ID: 11124910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cloning and overexpression of Moloney murine leukemia virus reverse transcriptase in Escherichia coli.
    Kotewicz ML; D'Alessio JM; Driftmier KM; Blodgett KP; Gerard GF
    Gene; 1985; 35(3):249-58. PubMed ID: 2412939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transdominant inhibition of Moloney murine leukemia virus proliferation by defective mutants of reverse transcriptase.
    Shirasawa Y; Sato S; Osawa T; Hirashima A
    J Biochem; 1996 Jun; 119(6):1070-5. PubMed ID: 8827439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cloning, expression, and purification of a catalytic fragment of Moloney murine leukemia virus reverse transcriptase: crystallization of nucleic acid complexes.
    Sun D; Jessen S; Liu C; Liu X; Najmudin S; Georgiadis MM
    Protein Sci; 1998 Jul; 7(7):1575-82. PubMed ID: 9684890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purification and characterization of murine retroviral reverse transcriptase expressed in Escherichia coli.
    Roth MJ; Tanese N; Goff SP
    J Biol Chem; 1985 Aug; 260(16):9326-35. PubMed ID: 2410413
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential inhibition of DNA polymerase and RNase H activities of the reverse transcriptase by phosphonoformate.
    Margalith M; Falk H; Panet A
    Mol Cell Biochem; 1982 Mar; 43(2):97-103. PubMed ID: 6178013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.