These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 24650207)
1. Rhizosphere ecology and phytoprotection in soils naturally suppressive to Thielaviopsis black root rot of tobacco. Almario J; Muller D; Défago G; Moënne-Loccoz Y Environ Microbiol; 2014 Jul; 16(7):1949-60. PubMed ID: 24650207 [TBL] [Abstract][Full Text] [Related]
2. Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. Kyselková M; Kopecký J; Frapolli M; Défago G; Ságová-Marecková M; Grundmann GL; Moënne-Loccoz Y ISME J; 2009 Oct; 3(10):1127-38. PubMed ID: 19554036 [TBL] [Abstract][Full Text] [Related]
3. Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco. Ramette A; Moënne-Loccoz Y; Défago G FEMS Microbiol Ecol; 2006 Mar; 55(3):369-81. PubMed ID: 16466376 [TBL] [Abstract][Full Text] [Related]
4. Prevalence of fluorescent pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco black root rot. Ramette A; Moënne-Loccoz Y; Défago G FEMS Microbiol Ecol; 2003 May; 44(1):35-43. PubMed ID: 19719649 [TBL] [Abstract][Full Text] [Related]
5. Effect of clay mineralogy on iron bioavailability and rhizosphere transcription of 2,4-diacetylphloroglucinol biosynthetic genes in biocontrol Pseudomonas protegens. Almario J; Prigent-Combaret C; Muller D; Moënne-Loccoz Y Mol Plant Microbe Interact; 2013 May; 26(5):566-74. PubMed ID: 23405868 [TBL] [Abstract][Full Text] [Related]
6. Natural plant disease suppressiveness in soils extends to insect pest control. Harmsen N; Vesga P; Glauser G; Klötzli F; Heiman CM; Altenried A; Vacheron J; Muller D; Moënne-Loccoz Y; Steinger T; Keel C; Garrido-Sanz D Microbiome; 2024 Jul; 12(1):127. PubMed ID: 39014485 [TBL] [Abstract][Full Text] [Related]
7. Cyclic lipopeptide-producing Pseudomonas koreensis group strains dominate the cocoyam rhizosphere of a Pythium root rot suppressive soil contrasting with P. putida prominence in conducive soils. Oni FE; Geudens N; Onyeka JT; Olorunleke OF; Salami AE; Omoboye OO; Arias AA; Adiobo A; De Neve S; Ongena M; Martins JC; Höfte M Environ Microbiol; 2020 Dec; 22(12):5137-5155. PubMed ID: 32524747 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms of natural soil suppressiveness to soilborne diseases. Mazzola M Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):557-64. PubMed ID: 12448751 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of rhizobacterial indicators of tobacco black root rot suppressiveness in farmers' fields. Kyselková M; Almario J; Kopecký J; Ságová-Marečková M; Haurat J; Muller D; Grundmann GL; Moënne-Loccoz Y Environ Microbiol Rep; 2014 Aug; 6(4):346-53. PubMed ID: 24992533 [TBL] [Abstract][Full Text] [Related]
10. Soil suppressiveness to Rhizoctonia solani and microbial diversity. Bakker Y; Van Loon FM; Schneider JH Commun Agric Appl Biol Sci; 2005; 70(3):29-33. PubMed ID: 16637155 [TBL] [Abstract][Full Text] [Related]
11. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Weller DM; Landa BB; Mavrodi OV; Schroeder KL; De La Fuente L; Blouin Bankhead S; Allende Molar R; Bonsall RF; Mavrodi DV; Thomashow LS Plant Biol (Stuttg); 2007 Jan; 9(1):4-20. PubMed ID: 17058178 [TBL] [Abstract][Full Text] [Related]
12. A new DGGE protocol targeting 2,4-diacetylphloroglucinol biosynthetic gene phlD from phylogenetically contrasted biocontrol pseudomonads for assessment of disease-suppressive soils. Frapolli M; Moënne-Loccoz Y; Meyer J; Défago G FEMS Microbiol Ecol; 2008 Jun; 64(3):468-81. PubMed ID: 18393988 [TBL] [Abstract][Full Text] [Related]
13. Bacterial community assemblages in the rhizosphere soil, root endosphere and cyst of soybean cyst nematode-suppressive soil challenged with nematodes. Hussain M; Hamid MI; Tian J; Hu J; Zhang X; Chen J; Xiang M; Liu X FEMS Microbiol Ecol; 2018 Oct; 94(10):. PubMed ID: 30052910 [TBL] [Abstract][Full Text] [Related]
14. Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. Mazurier S; Corberand T; Lemanceau P; Raaijmakers JM ISME J; 2009 Aug; 3(8):977-91. PubMed ID: 19369971 [TBL] [Abstract][Full Text] [Related]
15. Metabolomics approaches for the discrimination of disease suppressive soils for Rhizoctonia solani AG8 in cereal crops using Hayden HL; Rochfort SJ; Ezernieks V; Savin KW; Mele PM Sci Total Environ; 2019 Feb; 651(Pt 1):1627-1638. PubMed ID: 30360288 [TBL] [Abstract][Full Text] [Related]
16. Comparison of Soil Receptivity to Thielaviopsis basicola, Aphanomyces euteiches, and Fusarium solani f. sp. pisi Causing Root Rot in Pea. Oyarzun PJ; Dijst G; Zoon FC; Maas PW Phytopathology; 1997 May; 87(5):534-41. PubMed ID: 18945109 [TBL] [Abstract][Full Text] [Related]
17. Soil fungal biodiversity and pathogen identification of rotten disease in Aconitum carmichaelii (Fuzi) roots. Wang W; Zhang D; Wen H; Wang Q; Peng C; Gao J PLoS One; 2018; 13(10):e0205891. PubMed ID: 30379951 [TBL] [Abstract][Full Text] [Related]
18. Differences in Soil Microbial Community Composition Between Suppressive and Root Rot-Conducive in Tobacco Fields. Ding Y; Chen Y; Lin Z; Tuo Y; Li H; Wang Y Curr Microbiol; 2021 Feb; 78(2):624-633. PubMed ID: 33394085 [TBL] [Abstract][Full Text] [Related]
19. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Mendes R; Kruijt M; de Bruijn I; Dekkers E; van der Voort M; Schneider JH; Piceno YM; DeSantis TZ; Andersen GL; Bakker PA; Raaijmakers JM Science; 2011 May; 332(6033):1097-100. PubMed ID: 21551032 [TBL] [Abstract][Full Text] [Related]
20. Impact of biocontrol agents Pseudomonas fluorescens CHA0 and its genetically modified derivatives on the diversity of culturable fungi in the rhizosphere of mungbean. Shaukat SS; Siddiqui IA J Appl Microbiol; 2003; 95(5):1039-48. PubMed ID: 14633033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]