These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 24650234)

  • 1. Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: mechanisms involved in the degradation.
    Cajthaml T
    Environ Microbiol; 2015 Dec; 17(12):4822-34. PubMed ID: 24650234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi.
    Cajthaml T; Kresinová Z; Svobodová K; Möder M
    Chemosphere; 2009 May; 75(6):745-50. PubMed ID: 19243809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bisphenol A degradation in water by ligninolytic enzymes.
    Gassara F; Brar SK; Verma M; Tyagi RD
    Chemosphere; 2013 Aug; 92(10):1356-60. PubMed ID: 23668961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxylation of bisphenol A by hyper lignin-degrading fungus Phanerochaete sordida YK-624 under non-ligninolytic condition.
    Wang J; Yamamoto R; Yamamoto Y; Tokumoto T; Dong J; Thomas P; Hirai H; Kawagishi H
    Chemosphere; 2013 Oct; 93(7):1419-23. PubMed ID: 23942019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodecontamination of water from bisphenol A using ligninolytic fungi and the modulation role of humic acids.
    Loffredo E; Traversa A; Senesi N
    Ecotoxicol Environ Saf; 2012 May; 79():288-293. PubMed ID: 22305120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation and toxicity reduction of the endocrine disruptors nonylphenol, 4-tert-octylphenol and 4-cumylphenol by the non-ligninolytic fungus Umbelopsis isabellina.
    Janicki T; Krupiński M; Długoński J
    Bioresour Technol; 2016 Jan; 200():223-9. PubMed ID: 26492175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioaccumulation of pharmaceutically active compounds and endocrine disrupting chemicals in aquatic macrophytes: Results of hydroponic experiments with Echinodorus horemanii and Eichhornia crassipes.
    Pi N; Ng JZ; Kelly BC
    Sci Total Environ; 2017 Dec; 601-602():812-820. PubMed ID: 28578239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of endocrine disruptor biodegradation by integration of structure-activity relationship with pathway analysis.
    Kadowaki T; Wheelock CE; Adachi T; Kudo T; Okamoto S; Tanaka N; Tonomura K; Tsujimoto G; Mamitsuka H; Goto S; Kanehisa M
    Environ Sci Technol; 2007 Dec; 41(23):7997-8003. PubMed ID: 18186328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incerta.
    Liu Y; Guan Y; Gao Q; Tam NF; Zhu W
    Chemosphere; 2010 Jul; 80(5):592-9. PubMed ID: 20444488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems.
    Shi W; Wang L; Rousseau DP; Lens PN
    Environ Sci Pollut Res Int; 2010 May; 17(4):824-33. PubMed ID: 20213308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of the Metabolic Modification of Environmental Chemicals on Endocrine-disrupting Activity].
    Kitamura S
    Yakugaku Zasshi; 2018; 138(5):693-713. PubMed ID: 29710015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic biodegradation potential of endocrine-disrupting chemicals in surface-water sediment at Rocky Mountain National Park, USA.
    Bradley PM; Battaglin WA; Iwanowicz LR; Clark JM; Journey CA
    Environ Toxicol Chem; 2016 May; 35(5):1087-96. PubMed ID: 26588039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Bisphenol.alkylphenols].
    Hirose A; Koizumi M; Hasegawa R
    Nihon Rinsho; 2000 Dec; 58(12):2428-33. PubMed ID: 11187732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examining the biodegradation of endocrine disrupting bisphenol A and nonylphenol in WWTPs.
    Press-Kristensen K; Lindblom E; Schmidt JE; Henze M
    Water Sci Technol; 2008; 57(8):1253-6. PubMed ID: 18469398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suitability of Immobilized Systems for Microbiological Degradation of Endocrine Disrupting Compounds.
    Wojcieszyńska D; Marchlewicz A; Guzik U
    Molecules; 2020 Sep; 25(19):. PubMed ID: 33003396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enrichment, isolation, and biodegradation potential of long-branched chain alkylphenol degrading non-ligninolytic fungi from wastewater.
    Rajendran RK; Lin CC; Huang SL; Kirschner R
    Mar Pollut Bull; 2017 Dec; 125(1-2):416-425. PubMed ID: 28964501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic analysis reveals ligninolytic enzymes of white-rot fungus Phanerochaete sordida YK-624 participating in bisphenol F biodegradation under ligninolytic conditions.
    Wang J; Yin R; Zhang X; Wang N; Xiao P; Hirai H; Xiao T
    Environ Sci Pollut Res Int; 2021 Nov; 28(44):62390-62397. PubMed ID: 34195946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estrogenic environmental endocrine-disrupting chemical effects on reproductive neuroendocrine function and dysfunction across the life cycle.
    Dickerson SM; Gore AC
    Rev Endocr Metab Disord; 2007 Jun; 8(2):143-59. PubMed ID: 17674209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Action of Endocrine-Disrupting Chemicals on Wildlife; DDT and Its Derivatives Have Remained in the Environment.
    Matsushima A
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29734751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decontamination of a municipal landfill leachate from endocrine disruptors using a combined sorption/bioremoval approach.
    Loffredo E; Castellana G; Senesi N
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):2654-62. PubMed ID: 24122163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.