BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 24650553)

  • 1. Putative roles of neuropeptides in vagal afferent signaling.
    de Lartigue G
    Physiol Behav; 2014 Sep; 136():155-69. PubMed ID: 24650553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cocaine- and amphetamine-regulated transcript: stimulation of expression in rat vagal afferent neurons by cholecystokinin and suppression by ghrelin.
    de Lartigue G; Dimaline R; Varro A; Dockray GJ
    J Neurosci; 2007 Mar; 27(11):2876-82. PubMed ID: 17360909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TRPV1 enhances cholecystokinin signaling in primary vagal afferent neurons and mediates the central effects on spontaneous glutamate release in the NTS.
    Arnold RA; Fowler DK; Peters JH
    Am J Physiol Cell Physiol; 2024 Jan; 326(1):C112-C124. PubMed ID: 38047304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Vagal-NTS Neural Pathway that Stimulates Feeding.
    Chen J; Cheng M; Wang L; Zhang L; Xu D; Cao P; Wang F; Herzog H; Song S; Zhan C
    Curr Biol; 2020 Oct; 30(20):3986-3998.e5. PubMed ID: 32822608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Levels of Cocaine- and Amphetamine-Regulated Transcript in Vagal Afferents in the Mouse Are Unaltered in Response to Metabolic Challenges.
    Yuan X; Huang Y; Shah S; Wu H; Gautron L
    eNeuro; 2016; 3(5):. PubMed ID: 27822503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The versatility of the vagus.
    Dockray GJ
    Physiol Behav; 2009 Jul; 97(5):531-6. PubMed ID: 19419683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cocaine- and amphetamine-regulated transcript mediates the actions of cholecystokinin on rat vagal afferent neurons.
    De Lartigue G; Dimaline R; Varro A; Raybould H; De la Serre CB; Dockray GJ
    Gastroenterology; 2010 Apr; 138(4):1479-90. PubMed ID: 19854189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats.
    Koda S; Date Y; Murakami N; Shimbara T; Hanada T; Toshinai K; Niijima A; Furuya M; Inomata N; Osuye K; Nakazato M
    Endocrinology; 2005 May; 146(5):2369-75. PubMed ID: 15718279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholecystokinin and gut-brain signalling.
    Dockray GJ
    Regul Pept; 2009 Jun; 155(1-3):6-10. PubMed ID: 19345244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats.
    Date Y; Murakami N; Toshinai K; Matsukura S; Niijima A; Matsuo H; Kangawa K; Nakazato M
    Gastroenterology; 2002 Oct; 123(4):1120-8. PubMed ID: 12360474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CART in the dorsal vagal complex: sources of immunoreactivity and effects on Fos expression and food intake.
    Zheng H; Patterson LM; Berthoud HR
    Brain Res; 2002 Dec; 957(2):298-310. PubMed ID: 12445972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential expression of vesicular glutamate transporters by vagal afferent terminals in rat nucleus of the solitary tract: projections from the heart preferentially express vesicular glutamate transporter 1.
    Corbett EK; Sinfield JK; McWilliam PN; Deuchars J; Batten TF
    Neuroscience; 2005; 135(1):133-45. PubMed ID: 16084661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leptin Sensitizes NTS Neurons to Vagal Input by Increasing Postsynaptic NMDA Receptor Currents.
    Neyens D; Zhao H; Huston NJ; Wayman GA; Ritter RC; Appleyard SM
    J Neurosci; 2020 Sep; 40(37):7054-7064. PubMed ID: 32817248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: a route for ameliorating hyperphagia and obesity.
    Iwasaki Y; Maejima Y; Suyama S; Yoshida M; Arai T; Katsurada K; Kumari P; Nakabayashi H; Kakei M; Yada T
    Am J Physiol Regul Integr Comp Physiol; 2015 Mar; 308(5):R360-9. PubMed ID: 25540101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunohistochemical study of neuropeptides in vagal and glossopharyngeal afferent neurons in the rat.
    Helke CJ; Hill KM
    Neuroscience; 1988 Aug; 26(2):539-51. PubMed ID: 2459628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract.
    Beaumont E; Campbell RP; Andresen MC; Scofield S; Singh K; Libbus I; KenKnight BH; Snyder L; Cantrell N
    Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H354-H367. PubMed ID: 28476920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vagal afferents sense meal-associated gastrointestinal and pancreatic hormones: mechanism and physiological role.
    Iwasaki Y; Yada T
    Neuropeptides; 2012 Dec; 46(6):291-7. PubMed ID: 23020951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of axoplasmic transport in the rat vagus nerve alters the numbers of neuropeptide and tyrosine hydroxylase messenger RNA-containing and immunoreactive visceral afferent neurons of the nodose ganglion.
    Zhuo H; Lewin AC; Phillips ET; Sinclair CM; Helke CJ
    Neuroscience; 1995 May; 66(1):175-87. PubMed ID: 7543661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of glutamate in gastrointestinal vago-vagal reflexes initiated by gastrointestinal distention in the rat.
    Zhang X; Fogel R
    Auton Neurosci; 2003 Jan; 103(1-2):19-37. PubMed ID: 12531396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-fat diet attenuates the central response to within-meal satiation signals and modifies the receptor expression of vagal afferents in mice.
    Nefti W; Chaumontet C; Fromentin G; Tomé D; Darcel N
    Am J Physiol Regul Integr Comp Physiol; 2009 Jun; 296(6):R1681-6. PubMed ID: 19297544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.