These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 24650553)

  • 21. Blunted Vagal Cocaine- and Amphetamine-Regulated Transcript Promotes Hyperphagia and Weight Gain.
    Lee SJ; Krieger JP; Vergara M; Quinn D; McDougle M; de Araujo A; Darling R; Zollinger B; Anderson S; Pan A; Simonnet EJ; Pignalosa A; Arnold M; Singh A; Langhans W; Raybould HE; de Lartigue G
    Cell Rep; 2020 Feb; 30(6):2028-2039.e4. PubMed ID: 32049029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Channeling satiation: a primer on the role of TRP channels in the control of glutamate release from vagal afferent neurons.
    Wu SW; Fenwick AJ; Peters JH
    Physiol Behav; 2014 Sep; 136():179-84. PubMed ID: 25290762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin.
    Peters JH; Simasko SM; Ritter RC
    Physiol Behav; 2006 Nov; 89(4):477-85. PubMed ID: 16872644
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vagal afferent NMDA receptors modulate CCK-induced reduction of food intake through synapsin I phosphorylation in adult male rats.
    Campos CA; Shiina H; Silvas M; Page S; Ritter RC
    Endocrinology; 2013 Aug; 154(8):2613-25. PubMed ID: 23715865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel developments in vagal afferent nutrient sensing and its role in energy homeostasis.
    de Lartigue G; Diepenbroek C
    Curr Opin Pharmacol; 2016 Dec; 31():38-43. PubMed ID: 27591963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression and regulation of leptin receptor proteins in afferent and efferent neurons of the vagus nerve.
    Buyse M; Ovesjö ML; Goïot H; Guilmeau S; Péranzi G; Moizo L; Walker F; Lewin MJ; Meister B; Bado A
    Eur J Neurosci; 2001 Jul; 14(1):64-72. PubMed ID: 11488950
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enteroendocrine cell signalling via the vagus nerve.
    Dockray GJ
    Curr Opin Pharmacol; 2013 Dec; 13(6):954-8. PubMed ID: 24064396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Axotomy alters putative neurotransmitters in visceral sensory neurons of the nodose and petrosal ganglia.
    Helke CJ; Rabchevsky A
    Brain Res; 1991 Jun; 551(1-2):44-51. PubMed ID: 1680528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A method of nodose ganglia injection in Sprague-Dawley rat.
    Calik MW; Radulovacki M; Carley DW
    J Vis Exp; 2014 Nov; (93):e52233. PubMed ID: 25490160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensory signal transduction in the vagal primary afferent neurons.
    Li Y
    Curr Med Chem; 2007; 14(24):2554-63. PubMed ID: 17979708
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanistic relationship between the vagal afferent pathway, central nervous system and peripheral organs in appetite regulation.
    Ueno H; Nakazato M
    J Diabetes Investig; 2016 Nov; 7(6):812-818. PubMed ID: 27180615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subcellular localization of neuronal nitric oxide synthase in the rat nucleus of the solitary tract in relation to vagal afferent inputs.
    Atkinson L; Batten TF; Corbett EK; Sinfield JK; Deuchars J
    Neuroscience; 2003; 118(1):115-22. PubMed ID: 12676143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMDA channels control meal size via central vagal afferent terminals.
    Gillespie BR; Burns GA; Ritter RC
    Am J Physiol Regul Integr Comp Physiol; 2005 Nov; 289(5):R1504-11. PubMed ID: 16020524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vanilloid receptor (VR1) expression in vagal afferent neurons innervating the gastrointestinal tract.
    Patterson LM; Zheng H; Ward SM; Berthoud HR
    Cell Tissue Res; 2003 Mar; 311(3):277-87. PubMed ID: 12658436
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of neurotrophin-3 from smooth muscle disrupts vagal gastrointestinal afferent signaling and satiation.
    Fox EA; Biddinger JE; Baquet ZC; Jones KR; McAdams J
    Am J Physiol Regul Integr Comp Physiol; 2013 Dec; 305(11):R1307-22. PubMed ID: 24068045
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gut vagal afferents are necessary for the eating-suppressive effect of intraperitoneally administered ginsenoside Rb1 in rats.
    Shen L; Wang DQ; Lo CC; Arnold M; Tso P; Woods SC; Liu M
    Physiol Behav; 2015 Dec; 152(Pt A):62-7. PubMed ID: 26384952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential content of vesicular glutamate transporters in subsets of vagal afferents projecting to the nucleus tractus solitarii in the rat.
    Hermes SM; Colbert JF; Aicher SA
    J Comp Neurol; 2014 Feb; 522(3):642-53. PubMed ID: 23897509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake.
    Fox EA
    Auton Neurosci; 2006 Jun; 126-127():9-29. PubMed ID: 16677865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Short-chain fatty acids suppress food intake by activating vagal afferent neurons.
    Goswami C; Iwasaki Y; Yada T
    J Nutr Biochem; 2018 Jul; 57():130-135. PubMed ID: 29702431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leptin and the systems neuroscience of meal size control.
    Grill HJ
    Front Neuroendocrinol; 2010 Jan; 31(1):61-78. PubMed ID: 19836413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.