These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 24650553)

  • 41. Role of the vagus nerve in the development and treatment of diet-induced obesity.
    de Lartigue G
    J Physiol; 2016 Oct; 594(20):5791-5815. PubMed ID: 26959077
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A tale of two endings: modulation of satiation by NMDA receptors on or near central and peripheral vagal afferent terminals.
    Ritter RC
    Physiol Behav; 2011 Nov; 105(1):94-9. PubMed ID: 21382391
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Leptin and the systems neuroscience of meal size control.
    Grill HJ
    Front Neuroendocrinol; 2010 Jan; 31(1):61-78. PubMed ID: 19836413
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional and chemical anatomy of the afferent vagal system.
    Berthoud HR; Neuhuber WL
    Auton Neurosci; 2000 Dec; 85(1-3):1-17. PubMed ID: 11189015
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanisms of vagal plasticity influencing feeding behavior.
    de Lartigue G; Xu C
    Brain Res; 2018 Aug; 1693(Pt B):146-150. PubMed ID: 29903616
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cocaine- and amphetamine-regulated transcript in the rat vagus nerve: A putative mediator of cholecystokinin-induced satiety.
    Broberger C; Holmberg K; Kuhar MJ; Hökfelt T
    Proc Natl Acad Sci U S A; 1999 Nov; 96(23):13506-11. PubMed ID: 10557351
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inducible nitric oxide synthase-derived nitric oxide reduces vagal satiety signalling in obese mice.
    Yu Y; Park SJ; Beyak MJ
    J Physiol; 2019 Mar; 597(6):1487-1502. PubMed ID: 30565225
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gastrointestinal hormones and the dialogue between gut and brain.
    Dockray GJ
    J Physiol; 2014 Jul; 592(14):2927-41. PubMed ID: 24566540
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vagal afferent mediates the anorectic effect of peripheral secretin.
    Chu JY; Cheng CY; Sekar R; Chow BK
    PLoS One; 2013; 8(5):e64859. PubMed ID: 23738005
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neuroendocrine control of food intake.
    Valassi E; Scacchi M; Cavagnini F
    Nutr Metab Cardiovasc Dis; 2008 Feb; 18(2):158-68. PubMed ID: 18061414
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Validation and characterization of a novel method for selective vagal deafferentation of the gut.
    Diepenbroek C; Quinn D; Stephens R; Zollinger B; Anderson S; Pan A; de Lartigue G
    Am J Physiol Gastrointest Liver Physiol; 2017 Oct; 313(4):G342-G352. PubMed ID: 28705805
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Distribution of cocaine- and amphetamine-regulated transcript peptide in the guinea pig intrinsic cardiac nervous system and colocalization with neuropeptides or transmitter synthetic enzymes.
    Calupca MA; Locknar SA; Zhang L; Harrison TA; Hoover DB; Parsons RL
    J Comp Neurol; 2001 Oct; 439(1):73-86. PubMed ID: 11579383
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gut microbiota composition modulates inflammation and structure of the vagal afferent pathway.
    Kim JS; Kirkland RA; Lee SH; Cawthon CR; Rzepka KW; Minaya DM; de Lartigue G; Czaja K; de La Serre CB
    Physiol Behav; 2020 Oct; 225():113082. PubMed ID: 32682966
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prolactin-releasing peptide affects gastric motor function in rat by modulating synaptic transmission in the dorsal vagal complex.
    Grabauskas G; Zhou SY; Das S; Lu Y; Owyang C; Moises HC
    J Physiol; 2004 Dec; 561(Pt 3):821-39. PubMed ID: 15486017
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The controversial role of the vagus nerve in mediating ghrelin's actions: gut feelings and beyond.
    Perelló M; Cornejo MP; De Francesco PN; Fernandez G; Gautron L; Valdivia LS
    IBRO Neurosci Rep; 2022 Jun; 12():228-239. PubMed ID: 35746965
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons: histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/hypocretin and neuropeptide Y.
    Broberger C
    Brain Res; 1999 Nov; 848(1-2):101-13. PubMed ID: 10612702
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cooperative activation of cultured vagal afferent neurons by leptin and cholecystokinin.
    Peters JH; Karpiel AB; Ritter RC; Simasko SM
    Endocrinology; 2004 Aug; 145(8):3652-7. PubMed ID: 15105382
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intestinal glucagon-like peptide-1 effects on food intake: Physiological relevance and emerging mechanisms.
    Krieger JP
    Peptides; 2020 Sep; 131():170342. PubMed ID: 32522585
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy.
    Peters JH; Gallaher ZR; Ryu V; Czaja K
    J Comp Neurol; 2013 Oct; 521(15):3584-99. PubMed ID: 23749657
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Expression of cannabinoid CB1 receptors by vagal afferent neurons: kinetics and role in influencing neurochemical phenotype.
    Burdyga G; Varro A; Dimaline R; Thompson DG; Dockray GJ
    Am J Physiol Gastrointest Liver Physiol; 2010 Jul; 299(1):G63-9. PubMed ID: 20430875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.