These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 24650628)
1. ATP synthases from archaea: the beauty of a molecular motor. Grüber G; Manimekalai MS; Mayer F; Müller V Biochim Biophys Acta; 2014 Jun; 1837(6):940-52. PubMed ID: 24650628 [TBL] [Abstract][Full Text] [Related]
2. Bioenergetics of archaea: ancient energy conserving mechanisms developed in the early history of life. Lewalter K; Müller V Biochim Biophys Acta; 2006; 1757(5-6):437-45. PubMed ID: 16806054 [TBL] [Abstract][Full Text] [Related]
3. Bioenergetics of archaea: ATP synthesis under harsh environmental conditions. Müller V; Lemker T; Lingl A; Weidner C; Coskun U; Grüber G J Mol Microbiol Biotechnol; 2005; 10(2-4):167-80. PubMed ID: 16645313 [TBL] [Abstract][Full Text] [Related]
4. ATP synthases: insights into their motor functions from sequence and structural analyses. Hong S; Pedersen PL J Bioenerg Biomembr; 2003 Apr; 35(2):95-120. PubMed ID: 12887009 [TBL] [Abstract][Full Text] [Related]
5. The a subunit of the A1AO ATP synthase of Methanosarcina mazei Gö1 contains two conserved arginine residues that are crucial for ATP synthesis. Gloger C; Born AK; Antosch M; Müller V Biochim Biophys Acta; 2015; 1847(6-7):505-13. PubMed ID: 25724672 [TBL] [Abstract][Full Text] [Related]
6. ATP synthases with novel rotor subunits: new insights into structure, function and evolution of ATPases. Müller V; Lingl A; Lewalter K; Fritz M J Bioenerg Biomembr; 2005 Dec; 37(6):455-60. PubMed ID: 16691483 [TBL] [Abstract][Full Text] [Related]
7. Unique rotary ATP synthase and its biological diversity. von Ballmoos C; Cook GM; Dimroth P Annu Rev Biophys; 2008; 37():43-64. PubMed ID: 18573072 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of the archaeal A1Ao ATP synthase subunit B from Methanosarcina mazei Gö1: Implications of nucleotide-binding differences in the major A1Ao subunits A and B. Schäfer IB; Bailer SM; Düser MG; Börsch M; Bernal RA; Stock D; Grüber G J Mol Biol; 2006 May; 358(3):725-40. PubMed ID: 16563431 [TBL] [Abstract][Full Text] [Related]
9. Na+ transport by the A1AO-ATP synthase purified from Thermococcus onnurineus and reconstituted into liposomes. Mayer F; Lim JK; Langer JD; Kang SG; Müller V J Biol Chem; 2015 Mar; 290(11):6994-7002. PubMed ID: 25593316 [TBL] [Abstract][Full Text] [Related]
10. Crystallographic and enzymatic insights into the mechanisms of Mg-ADP inhibition in the A Singh D; Grüber G J Struct Biol; 2018 Jan; 201(1):26-35. PubMed ID: 29074108 [TBL] [Abstract][Full Text] [Related]
11. Functional production of an archaeal ATP synthase with a V-type c subunit in Escherichia coli. Westphal L; Litty D; Müller V Biochim Biophys Acta Bioenerg; 2021 Apr; 1862(4):148378. PubMed ID: 33460587 [TBL] [Abstract][Full Text] [Related]
12. Adaptations of anaerobic archaea to life under extreme energy limitation. Mayer F; Müller V FEMS Microbiol Rev; 2014 May; 38(3):449-72. PubMed ID: 24118021 [TBL] [Abstract][Full Text] [Related]
13. Structure of the nucleotide-binding subunit B of the energy producer A1A0 ATP synthase in complex with adenosine diphosphate. Kumar A; Manimekalai MS; Grüber G Acta Crystallogr D Biol Crystallogr; 2008 Nov; 64(Pt 11):1110-5. PubMed ID: 19020348 [TBL] [Abstract][Full Text] [Related]
14. Osmomechanics of the Propionigenium modestum F(o) motor. Dimroth P; Matthey U; Kaim G J Bioenerg Biomembr; 2000 Oct; 32(5):449-58. PubMed ID: 15254380 [TBL] [Abstract][Full Text] [Related]
15. Rows of ATP synthase dimers in native mitochondrial inner membranes. Buzhynskyy N; Sens P; Prima V; Sturgis JN; Scheuring S Biophys J; 2007 Oct; 93(8):2870-6. PubMed ID: 17557793 [TBL] [Abstract][Full Text] [Related]
16. The structure of subunit E of the Pyrococcus horikoshii OT3 A-ATP synthase gives insight into the elasticity of the peripheral stalk. Balakrishna AM; Hunke C; Grüber G J Mol Biol; 2012 Jul; 420(3):155-63. PubMed ID: 22516614 [TBL] [Abstract][Full Text] [Related]
17. Small-angle X-ray scattering reveals the solution structure of the peripheral stalk subunit H of the A1AO ATP synthase from Methanocaldococcus jannaschii and its binding to the catalytic A subunit. Biuković G; Rössle M; Gayen S; Mu Y; Grüber G Biochemistry; 2007 Feb; 46(8):2070-8. PubMed ID: 17263559 [TBL] [Abstract][Full Text] [Related]
18. Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F Murphy BJ; Klusch N; Langer J; Mills DJ; Yildiz Ö; Kühlbrandt W Science; 2019 Jun; 364(6446):. PubMed ID: 31221832 [TBL] [Abstract][Full Text] [Related]
19. An exceptional variability in the motor of archael A1A0 ATPases: from multimeric to monomeric rotors comprising 6-13 ion binding sites. Müller V J Bioenerg Biomembr; 2004 Feb; 36(1):115-25. PubMed ID: 15168615 [TBL] [Abstract][Full Text] [Related]