BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24650628)

  • 1. ATP synthases from archaea: the beauty of a molecular motor.
    Grüber G; Manimekalai MS; Mayer F; Müller V
    Biochim Biophys Acta; 2014 Jun; 1837(6):940-52. PubMed ID: 24650628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioenergetics of archaea: ancient energy conserving mechanisms developed in the early history of life.
    Lewalter K; Müller V
    Biochim Biophys Acta; 2006; 1757(5-6):437-45. PubMed ID: 16806054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioenergetics of archaea: ATP synthesis under harsh environmental conditions.
    Müller V; Lemker T; Lingl A; Weidner C; Coskun U; Grüber G
    J Mol Microbiol Biotechnol; 2005; 10(2-4):167-80. PubMed ID: 16645313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP synthases: insights into their motor functions from sequence and structural analyses.
    Hong S; Pedersen PL
    J Bioenerg Biomembr; 2003 Apr; 35(2):95-120. PubMed ID: 12887009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The a subunit of the A1AO ATP synthase of Methanosarcina mazei Gö1 contains two conserved arginine residues that are crucial for ATP synthesis.
    Gloger C; Born AK; Antosch M; Müller V
    Biochim Biophys Acta; 2015; 1847(6-7):505-13. PubMed ID: 25724672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP synthases with novel rotor subunits: new insights into structure, function and evolution of ATPases.
    Müller V; Lingl A; Lewalter K; Fritz M
    J Bioenerg Biomembr; 2005 Dec; 37(6):455-60. PubMed ID: 16691483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unique rotary ATP synthase and its biological diversity.
    von Ballmoos C; Cook GM; Dimroth P
    Annu Rev Biophys; 2008; 37():43-64. PubMed ID: 18573072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the archaeal A1Ao ATP synthase subunit B from Methanosarcina mazei Gö1: Implications of nucleotide-binding differences in the major A1Ao subunits A and B.
    Schäfer IB; Bailer SM; Düser MG; Börsch M; Bernal RA; Stock D; Grüber G
    J Mol Biol; 2006 May; 358(3):725-40. PubMed ID: 16563431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+ transport by the A1AO-ATP synthase purified from Thermococcus onnurineus and reconstituted into liposomes.
    Mayer F; Lim JK; Langer JD; Kang SG; Müller V
    J Biol Chem; 2015 Mar; 290(11):6994-7002. PubMed ID: 25593316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic and enzymatic insights into the mechanisms of Mg-ADP inhibition in the A
    Singh D; Grüber G
    J Struct Biol; 2018 Jan; 201(1):26-35. PubMed ID: 29074108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional production of an archaeal ATP synthase with a V-type c subunit in Escherichia coli.
    Westphal L; Litty D; Müller V
    Biochim Biophys Acta Bioenerg; 2021 Apr; 1862(4):148378. PubMed ID: 33460587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptations of anaerobic archaea to life under extreme energy limitation.
    Mayer F; Müller V
    FEMS Microbiol Rev; 2014 May; 38(3):449-72. PubMed ID: 24118021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the nucleotide-binding subunit B of the energy producer A1A0 ATP synthase in complex with adenosine diphosphate.
    Kumar A; Manimekalai MS; Grüber G
    Acta Crystallogr D Biol Crystallogr; 2008 Nov; 64(Pt 11):1110-5. PubMed ID: 19020348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osmomechanics of the Propionigenium modestum F(o) motor.
    Dimroth P; Matthey U; Kaim G
    J Bioenerg Biomembr; 2000 Oct; 32(5):449-58. PubMed ID: 15254380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rows of ATP synthase dimers in native mitochondrial inner membranes.
    Buzhynskyy N; Sens P; Prima V; Sturgis JN; Scheuring S
    Biophys J; 2007 Oct; 93(8):2870-6. PubMed ID: 17557793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of subunit E of the Pyrococcus horikoshii OT3 A-ATP synthase gives insight into the elasticity of the peripheral stalk.
    Balakrishna AM; Hunke C; Grüber G
    J Mol Biol; 2012 Jul; 420(3):155-63. PubMed ID: 22516614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small-angle X-ray scattering reveals the solution structure of the peripheral stalk subunit H of the A1AO ATP synthase from Methanocaldococcus jannaschii and its binding to the catalytic A subunit.
    Biuković G; Rössle M; Gayen S; Mu Y; Grüber G
    Biochemistry; 2007 Feb; 46(8):2070-8. PubMed ID: 17263559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F
    Murphy BJ; Klusch N; Langer J; Mills DJ; Yildiz Ö; Kühlbrandt W
    Science; 2019 Jun; 364(6446):. PubMed ID: 31221832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An exceptional variability in the motor of archael A1A0 ATPases: from multimeric to monomeric rotors comprising 6-13 ion binding sites.
    Müller V
    J Bioenerg Biomembr; 2004 Feb; 36(1):115-25. PubMed ID: 15168615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotary Ion-Translocating ATPases/ATP Synthases: Diversity, Similarities, and Differences.
    Zubareva VM; Lapashina AS; Shugaeva TE; Litvin AV; Feniouk BA
    Biochemistry (Mosc); 2020 Dec; 85(12):1613-1630. PubMed ID: 33705299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.