BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 24650708)

  • 1. Development and characterization of colloidal silica-based slow-release permanganate gel (SRP-G): laboratory investigations.
    Lee ES; Gupta N
    Chemosphere; 2014 Aug; 109():195-201. PubMed ID: 24650708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permanganate gel (PG) for groundwater remediation: compatibility, gelation, and release characteristics.
    Lee ES; Olson PR; Gupta N; Solpuker U; Schwartz FW; Kim Y
    Chemosphere; 2014 Feb; 97():140-5. PubMed ID: 24331874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laboratory-scale characterization of slow-release permanganate gel (SRP-G) for the in-situ treatment of chlorinated-solvent groundwater plumes.
    Ogundare O; Tick GR; Esfahani MR; Akyol NH; Zhang Y
    Chemosphere; 2024 Jul; 360():142392. PubMed ID: 38777195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-temperature Slow-release Permanganate Gel for Groundwater Remediation: Dynamics in Saturated Porous Media.
    Acheampong E; Lee ES
    Chemosphere; 2024 Jun; ():142716. PubMed ID: 38945223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injectable silica-permanganate gel as a slow-release MnO4(-) source for groundwater remediation: rheological properties and release dynamics.
    Yang S; Oostrom M; Truex MJ; Li G; Zhong L
    Environ Sci Process Impacts; 2016 Feb; 18(2):256-64. PubMed ID: 26766607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of permanganate oxidation of TCE at low reagent concentrations.
    Woo NC; Hyun SG; Park WW; Lee ES; Schwartz FW
    Environ Technol; 2009 Dec; 30(13):1337-42. PubMed ID: 20088197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of KMnO(4)-releasing composites for in situ chemical oxidation of TCE-contaminated groundwater.
    Liang SH; Chen KF; Wu CS; Lin YH; Kao CM
    Water Res; 2014 May; 54():149-58. PubMed ID: 24568784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gel barrier formation in unsaturated porous media.
    Kim M; Corapcioglu MY
    J Contam Hydrol; 2002 May; 56(1-2):75-98. PubMed ID: 12076024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow-releasing permanganate ions from permanganate core-manganese oxide shell particles for the oxidative degradation of an algae odorant in water.
    Omoike AI; Harmon D
    Chemosphere; 2019 May; 223():391-398. PubMed ID: 30797162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. To postpone the precipitation of manganese oxides in the degradation of tetrachloroethylene by controlling the permanganate concentration.
    Yang W; Qiu Z; Zhao Z; Lu S; Sui Q; Gu X
    Environ Technol; 2017 Jan; 38(1):34-41. PubMed ID: 27149929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Oxidation of phenolic compounds with permanganate catalyzed by manganese dioxide].
    Pang SY; Jiang J; Ma J; Ouyang F
    Huan Jing Ke Xue; 2010 Oct; 31(10):2331-5. PubMed ID: 21229741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics and applications of controlled-release KMnO4 for groundwater remediation.
    Lee ES; Schwartz FW
    Chemosphere; 2007 Feb; 66(11):2058-66. PubMed ID: 17140635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and properties of the persulfate gel materials and application for the remediation of 2,4-dinitrotoluene contaminated groundwater.
    Xu X; Wan S; Xia F; Han X; Deng S; Xiao H; Jiang Y; Liu H; Yang Y
    Sci Total Environ; 2022 Oct; 843():157023. PubMed ID: 35772545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNAPL remediation with in situ chemical oxidation using potassium permanganate. II. Increasing removal efficiency by dissolving Mn oxide precipitates.
    Li XD; Schwartz FW
    J Contam Hydrol; 2004 Feb; 68(3-4):269-87. PubMed ID: 14734249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of potassium permanganate particles with manganese dioxide.
    Rusevova K; Kopinke FD; Georgi A
    Chemosphere; 2012 Feb; 86(8):783-8. PubMed ID: 22130122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of controlled-release KMnO4 (CRP) barrier system for groundwater remediation: a pilot-scale flow-tank study.
    Lee ES; Woo NC; Schwartz FW; Lee BS; Lee KC; Woo MH; Kim JH; Kim HK
    Chemosphere; 2008 Mar; 71(5):902-10. PubMed ID: 18207217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laboratory-scale column study for remediation of TCE-contaminated aquifers using three-section controlled-release potassium permanganate barriers.
    Yuan B; Li F; Chen Y; Fu ML
    J Environ Sci (China); 2013 May; 25(5):971-7. PubMed ID: 24218827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow-release permanganate versus unactivated persulfate for long-term in situ chemical oxidation of 1,4-dioxane and chlorinated solvents.
    Evans PJ; Dugan P; Nguyen D; Lamar M; Crimi M
    Chemosphere; 2019 Apr; 221():802-811. PubMed ID: 30684778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compatibility of polymers and chemical oxidants for enhanced groundwater remediation.
    Smith MM; Silva JA; Munakata-Marr J; McCray JE
    Environ Sci Technol; 2008 Dec; 42(24):9296-301. PubMed ID: 19174907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of sources of bulk conductivity change in saturated silica sand after unbuffered TCE oxidation by permanganate.
    Hort RD; Revil A; Munakata-Marr J
    J Contam Hydrol; 2014 Sep; 165():11-23. PubMed ID: 25064184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.