These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24650885)

  • 1. Binomial distribution for quantification of protein subunits in biological nanoassemblies and functional nanomachines.
    Fang H; Zhang P; Huang LP; Zhao Z; Pi F; Montemagno C; Guo P
    Nanomedicine; 2014 Oct; 10(7):1433-40. PubMed ID: 24650885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approaches to determine stoichiometry of viral assembly components.
    Trottier M; Guo P
    J Virol; 1997 Jan; 71(1):487-94. PubMed ID: 8985375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New approach to develop ultra-high inhibitory drug using the power function of the stoichiometry of the targeted nanomachine or biocomplex.
    Shu D; Pi F; Wang C; Zhang P; Guo P
    Nanomedicine (Lond); 2015 Jul; 10(12):1881-97. PubMed ID: 26139124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple mathematical formula for stoichiometry quantification of viral and nanobiological assemblage using slopes of log/log plot curves.
    Shu D; Huang L; Guo P
    J Virol Methods; 2004 Jan; 115(1):19-30. PubMed ID: 14656457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of bacteriophage phi29 DNA packaging motor and its applications in nanotechnology and therapy.
    Lee TJ; Schwartz C; Guo P
    Ann Biomed Eng; 2009 Oct; 37(10):2064-81. PubMed ID: 19495981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation.
    Zhang H; Guo P
    Methods; 2014 May; 67(2):169-76. PubMed ID: 24440482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of gp16 with pRNA and DNA for genome packaging by the motor of bacterial virus phi29.
    Lee TJ; Guo P
    J Mol Biol; 2006 Feb; 356(3):589-99. PubMed ID: 16376938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA packaging motor assembly intermediate of bacteriophage phi29.
    Koti JS; Morais MC; Rajagopal R; Owen BA; McMurray CT; Anderson DL
    J Mol Biol; 2008 Sep; 381(5):1114-32. PubMed ID: 18674782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ATPase of the phi29 DNA packaging motor is a member of the hexameric AAA+ superfamily.
    Schwartz C; De Donatis GM; Fang H; Guo P
    Virology; 2013 Aug; 443(1):20-7. PubMed ID: 23706809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revolution rather than rotation of AAA+ hexameric phi29 nanomotor for viral dsDNA packaging without coiling.
    Schwartz C; De Donatis GM; Zhang H; Fang H; Guo P
    Virology; 2013 Aug; 443(1):28-39. PubMed ID: 23763768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of the fluorescent-energy-conversion arm of phi29 DNA packaging motor for single-molecule studies.
    Lee TJ; Zhang H; Chang CL; Savran C; Guo P
    Small; 2009 Nov; 5(21):2453-9. PubMed ID: 19743427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strand and nucleotide-dependent ATPase activity of gp16 of bacterial virus phi29 DNA packaging motor.
    Lee TJ; Zhang H; Liang D; Guo P
    Virology; 2008 Oct; 380(1):69-74. PubMed ID: 18701124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of a new method for potent drug development using power function of stoichiometry of homomeric biocomplexes or biological nanomotors.
    Pi F; Vieweger M; Zhao Z; Wang S; Guo P
    Expert Opin Drug Deliv; 2016; 13(1):23-36. PubMed ID: 26307193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods for Single-Molecule Sensing and Detection Using Bacteriophage Phi29 DNA Packaging Motor.
    Haque F; Zhang H; Wang S; Chang CL; Savran C; Guo P
    Methods Mol Biol; 2018; 1805():423-450. PubMed ID: 29971730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Channel size conversion of Phi29 DNA-packaging nanomotor for discrimination of single- and double-stranded nucleic acids.
    Geng J; Wang S; Fang H; Guo P
    ACS Nano; 2013 Apr; 7(4):3315-23. PubMed ID: 23488809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical modification patterns of active and inactive as well as procapsid-bound and unbound DNA-packaging RNAof bacterial virus Phi29.
    Zhang C; Trottier M; Chen C; Guo P
    Virology; 2001 Mar; 281(2):281-93. PubMed ID: 11277700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translation of the long-term fundamental studies on viral DNA packaging motors into nanotechnology and nanomedicine.
    Liang C; Weitao T; Zhou L; Guo P
    Sci China Life Sci; 2020 Aug; 63(8):1103-1129. PubMed ID: 32617827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of PEG to acquire highly soluble DNA-packaging enzyme gp16 of bacterial virus phi29 for stoichiometry quantification.
    Huang LP; Guo P
    J Virol Methods; 2003 May; 109(2):235-44. PubMed ID: 12711068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detailed kinetic analysis of the φ29 DNA packaging motor providing evidence for coordinated intersubunit ATPase activity of gp16.
    Todd J; Thielman B; Wendell D
    Virology; 2012 Oct; 432(2):370-5. PubMed ID: 22795974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly mechanism of the sixty-subunit nanoparticles via interaction of RNA with the reengineered protein connector of phi29 DNA-packaging motor.
    Xiao F; Demeler B; Guo P
    ACS Nano; 2010 Jun; 4(6):3293-301. PubMed ID: 20509670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.