BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 24650898)

  • 1. Separate molecular determinants in amyloidogenic and antimicrobial peptides.
    Landreh M; Johansson J; Jörnvall H
    J Mol Biol; 2014 May; 426(11):2159-66. PubMed ID: 24650898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial activity of human islet amyloid polypeptides: an insight into amyloid peptides' connection with antimicrobial peptides.
    Wang L; Liu Q; Chen JC; Cui YX; Zhou B; Chen YX; Zhao YF; Li YM
    Biol Chem; 2012 Jul; 393(7):641-6. PubMed ID: 22944668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini.
    Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M
    Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural requirements for antimicrobial versus chemoattractant activities for dermaseptin S9.
    Auvynet C; El Amri C; Lacombe C; Bruston F; Bourdais J; Nicolas P; Rosenstein Y
    FEBS J; 2008 Aug; 275(16):4134-51. PubMed ID: 18637027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional characterization of two genetically related meucin peptides highlights evolutionary divergence and convergence in antimicrobial peptides.
    Gao B; Sherman P; Luo L; Bowie J; Zhu S
    FASEB J; 2009 Apr; 23(4):1230-45. PubMed ID: 19088182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of introducing a short amyloidogenic sequence from the Aβ peptide at the N-terminus of 18-residue amphipathic helical peptides.
    SivakamaSundari C; Rukmani S; Nagaraj R
    J Pept Sci; 2012 Feb; 18(2):122-8. PubMed ID: 22052825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular understanding of a potential functional link between antimicrobial and amyloid peptides.
    Zhang M; Zhao J; Zheng J
    Soft Matter; 2014 Oct; 10(38):7425-51. PubMed ID: 25105988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR characterization of the interaction of GroEL with amyloid β as a model ligand.
    Yagi-Utsumi M; Kunihara T; Nakamura T; Uekusa Y; Makabe K; Kuwajima K; Kato K
    FEBS Lett; 2013 Jun; 587(11):1605-9. PubMed ID: 23603391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amyloidogenic protein-membrane interactions: mechanistic insight from model systems.
    Butterfield SM; Lashuel HA
    Angew Chem Int Ed Engl; 2010 Aug; 49(33):5628-54. PubMed ID: 20623810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of discordant helices in amyloid fibril-forming proteins.
    Päiviö A; Nordling E; Kallberg Y; Thyberg J; Johansson J
    Protein Sci; 2004 May; 13(5):1251-9. PubMed ID: 15096631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An orphan dermaseptin from frog skin reversibly assembles to amyloid-like aggregates in a pH-dependent fashion.
    Gössler-Schöfberger R; Hesser G; Muik M; Wechselberger C; Jilek A
    FEBS J; 2009 Oct; 276(20):5849-59. PubMed ID: 19765079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of amphipathic alpha-helical antimicrobial peptides to lipid membranes: lessons from temporins B and L.
    Mahalka AK; Kinnunen PK
    Biochim Biophys Acta; 2009 Aug; 1788(8):1600-9. PubMed ID: 19394305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Amyloid Fibril-Forming Properties of the Amphibian Antimicrobial Peptide Uperin 3.5.
    Calabrese AN; Liu Y; Wang T; Musgrave IF; Pukala TL; Tabor RF; Martin LL; Carver JA; Bowie JH
    Chembiochem; 2016 Feb; 17(3):239-46. PubMed ID: 26676975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional swapping of amyloidogenic and antimicrobial peptides: Redefining the role of amyloidogenic propensity in disease and host defense.
    Yadav JK
    J Pept Sci; 2022 Apr; 28(4):e3378. PubMed ID: 34738279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-terminal amphipathic helix as a trigger of hemolytic activity in antimicrobial peptides: a case study in latarcins.
    Polyansky AA; Vassilevski AA; Volynsky PE; Vorontsova OV; Samsonova OV; Egorova NS; Krylov NA; Feofanov AV; Arseniev AS; Grishin EV; Efremov RG
    FEBS Lett; 2009 Jul; 583(14):2425-8. PubMed ID: 19563807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the role of GXXXG motifs in helical folding and self-association of plasticins, Gly/Leu-rich antimicrobial peptides.
    Carlier L; Joanne P; Khemtémourian L; Lacombe C; Nicolas P; El Amri C; Lequin O
    Biophys Chem; 2015 Jan; 196():40-52. PubMed ID: 25291467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein denaturation and aggregation: Cellular responses to denatured and aggregated proteins.
    Meredith SC
    Ann N Y Acad Sci; 2005 Dec; 1066():181-221. PubMed ID: 16533927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an alpha-helical conformation.
    Landon C; Meudal H; Boulanger N; Bulet P; Vovelle F
    Biopolymers; 2006 Feb; 81(2):92-103. PubMed ID: 16170803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disperse distribution of cationic amino acids on hydrophilic surface of helical wheel enhances antimicrobial peptide activity.
    Kim YS; Cha HJ
    Biotechnol Bioeng; 2010 Oct; 107(2):216-23. PubMed ID: 20506191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-activity relations of parasin I, a histone H2A-derived antimicrobial peptide.
    Koo YS; Kim JM; Park IY; Yu BJ; Jang SA; Kim KS; Park CB; Cho JH; Kim SC
    Peptides; 2008 Jul; 29(7):1102-8. PubMed ID: 18406495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.